Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
2.
Pharm Res ; 41(4): 807-817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443629

RESUMEN

OBJECTIVE: Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS: Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS: PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS: Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.


Asunto(s)
Nanopartículas , Retina , Ratones , Animales , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/metabolismo , Enfermedad de Stargardt/terapia , Retina/metabolismo , Terapia Genética/métodos , Plásmidos/genética , ADN/metabolismo , Ratones Noqueados , Polietilenglicoles/metabolismo , Inyecciones Intravítreas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
3.
Bioconjug Chem ; 35(3): 381-388, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446033

RESUMEN

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is overexpressed in human triple-negative breast cancer (TNBC) and promotes cell migration and proliferation. TNBC is limited in treatment options relative to hormone-receptor-positive breast cancer and is commonly treated with chemotherapy, which is often compromised by acquired resistance. DANCR has been implicated in the development of chemoresistance across multiple cancer types. Here, we applied magnetic resonance molecular imaging (MRMI) with a targeted contrast agent, MT218, specific to extradomain-B fibronectin (EDB-FN), a marker for epithelial-to-mesenchymal transition, to assess the therapeutic efficacy of the combination of paclitaxel and ZD2-PEG-ECO/siDANCR nanoparticles (ZD2-siDANCR-ELNP) to treat TNBC. The treatment of orthotopic MDA-MB-231 TNBC in mice with paclitaxel significantly suppressed tumor growth but with a significant increase of EDB-FN in the tumor, as revealed by MRMI and immunohistochemistry. Combining ZD2-siDANCR-ELNP with paclitaxel further reduced tumor sizes, along with reduced EDB-FN expression. Interestingly, MT218-MRMI revealed a lower reduction of tumor signal enhancement with the combination treatment than that with the siDANCR treatment alone, which was supported by higher cell density in the tumors treated with the combination therapy, as shown by histochemical analysis. MT218-MRMI clearly revealed the changes of the tumor microenvironment in response to various therapies and is effective to noninvasively assess the response of TNBC tumors to the therapies. Regulating oncogenic lncRNA DANCR is an effective strategy for improving the outcomes of chemotherapy in TNBC.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , ARN Largo no Codificante/genética , Interferencia de ARN , Línea Celular Tumoral , Paclitaxel/uso terapéutico , Espectroscopía de Resonancia Magnética , Imagen Molecular/métodos , Proliferación Celular , Microambiente Tumoral
4.
Invest Radiol ; 59(2): 165-169, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015107

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the pharmacokinetics and safety profile of MT218, a peptide-targeted gadolinium-based contrast agent, in healthy males. MATERIALS AND METHODS: This was a double-blind, randomized, placebo-controlled, single-ascending-dose study including 30 healthy male subjects. In each dose group (0.01, 0.02, 0.04, and 0.08 mmol/kg), 4 subjects received MT218 and 2 subjects received placebo (saline) in bolus injections. The highest dose group (0.08 mmol/kg) was assessed in 2 cohorts, 1 fasted and 1 nonfasted. Clinical laboratory tests, vital signs, and electrocardiograms were investigated. Gadolinium concentrations were measured in plasma samples collected before administration and over a 24-hour period postinjection, and in urine specimens collected until 22 days. A noncompartmental model was used for pharmacokinetic analysis. A clinical and biological safety follow-up was carried out for up to 6 months. RESULTS: No clinically significant modifications in biochemistry, hematology, urinalysis, electrocardiogram parameters, or vital signs were reported at any time point for any treatment group. No serious adverse events were observed in any dose group. Transient dizziness, hyperhidrosis, and injection site coldness were the main adverse events reported in both the MT218 and placebo groups. The mean total apparent clearance decreased slightly with increasing dose, and the median plasma t 1/2 ranged from 1.7 hours in the 0.01 mmol/kg group to 2.7 hours in the 0.08 mmol/kg nonfasted group. MT218 was rapidly excreted via renal filtration with 42.9% to 52.8% of the injected dose measured in urine within the first hour after administration, and 92.5% to 117.3% in urine within 24 hours. No Gd was detected by inductively coupled plasma mass spectrometry in urine after 21 days. CONCLUSION: Single intravenous administration of MT218 was safely tolerated in the healthy males. Its pharmacokinetic parameters and safety profile are well aligned with those of other gadolinium-based contrast agents.


Asunto(s)
Medios de Contraste , Neoplasias , Humanos , Masculino , Gadolinio , Área Bajo la Curva , Imagen por Resonancia Magnética , Método Doble Ciego , Relación Dosis-Respuesta a Droga
5.
Chem Biomed Imaging ; 1(5): 461-470, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37655165

RESUMEN

Differentiation antagonizing noncoding RNA (DANCR) is recognized as an oncogenic long noncoding RNA (lncRNA) overexpressed in triple negative breast cancer (TNBC). We showed in a previous study that RNAi with targeted multifunctional ionizable lipid ECO/siRNA nanoparticles was effective to regulate this undruggable target for effective treatment of TNBC. In this study, we developed dual-targeted ECO/siDANCR nanoparticles by targeting a tumor extracellular matrix oncoprotein, extradomain B fibronectin (EDB-FN), and integrins overexpressed on cancer cells for enhanced delivery of siDANCR. The treatment of Hs578T TNBC cells and MCF-7 estrogen receptor-positive cells in vitro resulted in significant down-regulation of DANCR and EDB-FN and suppressed invasion and 3D spheroid formation of the cells. Magnetic resonance molecular imaging (MRMI) with an EDB-FN-targeted contrast agent, MT218, was used to noninvasively evaluate tumor response to treatment with the targeted ECO/siDANCR nanoparticles in female nude mice bearing orthotopic Hs578T and MCF-7 xenografts. MRMI with MT218 was effective to differentiate between aggressive TNBC with high DANCR and EDB-FN expression and ER+ MCF-7 tumors with low expression of the targets. MRMI showed that the dual-targeted ECO/siDANCR nanoparticles resulted in more significant inhibition of tumor growth in both models than the controls and significantly reduced EDB-FN expression in the TNBC tumors. The combination of MRMI and dual-targeted ECO/siDANCR nanoparticles is a promising approach for image-guided treatment of TNBC by regulating the onco-lncRNA.

7.
J Hepatocell Carcinoma ; 10: 291-301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860804

RESUMEN

Purpose: We tested a recently developed short peptide radioligand for PET imaging of hepatocellular carcinoma (HCC) by targeting an oncoprotein, extra-domain B fibronectin (EDB-FN) in the tumor microenvironment. Methods: The radioligand consists of a small linear peptide ZD2 with 68Ga-NOTA chelator, and specifically binds to EDB-FN. PET images were acquired dynamically for 1 hour after intravenously (i.v.) injecting 37 MBq (1.0 mCi) of the radioligand into the woodchuck model of naturally occurring HCC. Woodchuck HCC originated from chronic viral hepatitis infection, which recapitulates the corresponding human primary liver cancer. The animals were euthanized post-imaging for tissue collection and validation. Results: For ZD2 avid liver tumors, the radioligand accumulation plateaued a few minutes after injection, while the liver background uptake stabilized 20 min post-injection. The status of EDB-FN in woodchuck HCC was confirmed by histology and validated by PCR and western blocking. Conclusion: We have showed the viability of using the ZD2 short peptide radioligand targeting EDB-FN in liver tumor tissue for PET imaging of HCC, which can potentially impact the clinical care for HCC patients.

8.
Cells ; 12(5)2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36899821

RESUMEN

Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.


Asunto(s)
Fibronectinas , Neoplasias , Humanos , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , RNA-Seq
10.
Pharm Res ; 40(1): 27-46, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36600047

RESUMEN

Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.


Asunto(s)
COVID-19 , Nanopartículas , Ácidos Nucleicos , Humanos , Vacunas contra la COVID-19 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , SARS-CoV-2/genética , Lípidos/química , Nanopartículas/química
11.
Mol Ther Nucleic Acids ; 29: 823-835, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36159595

RESUMEN

Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).

12.
Acc Chem Res ; 55(19): 2833-2847, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36121350

RESUMEN

Magnetic resonance imaging (MRI) is a clinical imaging modality that provides high-resolution images of soft tissues, including cancerous lesions. Stable gadolinium(III) chelates have been used as contrast agents (CA) in MRI to enhance the contrast between the tissues of interest and surrounding tissues for accurate diagnostic imaging. Magnetic resonance molecular imaging (MRMI) of cancer requires targeted CA to specifically elucidate cancer-associated molecular processes and can provide high-resolution delineation and characterization of cancer for precision medicine. The main challenge for MRMI is the lack of sufficient sensitivity to detect the low concentration of the cellular oncogenic markers. In addition, targeted CA must satisfy regulatory safety requirements prior to clinical development. Up to now, there is no FDA-approved targeted CA for MRMI of cancer.In this Account, we discuss the latest developments in the design and development of clinically translatable targeted CA for MRMI of cancer, with an emphasis on our own research. The primary limitation of MRMI can be overcome by designing small molecular targeted CA to target abundant cancer-specific targets found in the tumor microenvironment (TME). For example, aggressive tumors have a unique extracellular matrix (ECM) composed of oncoproteins, which can be used as targetable markers for MRMI. We have designed and prepared small peptide conjugates of clinical contrast agents, including Gd-DTPA and Gd-DOTA, to target fibrin-fibronectin clots in tumors. These small molecular CA have been effective in enhancing MRMI detection of solid tumors and have demonstrated the ability to detect submillimeter cancer micrometastases in mouse tumor models, exceeding the detection limit of current clinical imaging modalities. We have also identified extradomain B fibronectin (EDB-FN), an oncofetal subtype of fibronectin, as a promising TME target to leverage in the design and development of small peptide targeted CA for clinical translation. The expression level of EDB-FN is correlated with invasiveness of cancer cells and poor patient survival of multiple cancer types. ZD2 peptide with a sequence of seven amino acids (TVRTSAD) was identified to specifically bind to the EDB protein fragment. Several ZD2 conjugates of macrocyclic GBCA, including Gd-DOTA and Gd(HP-DO3A), have been synthesized and tested in mouse tumor models. ZD2-N3-Gd(HP-DO3A) (MT218) with a high r1 relaxivity was selected as the lead agent for clinical translation. The physicochemical properties and preclinical assessments of MT218 are summarized in this Account. MRMI of EDB-FN with MT218 can effectively detect invasive tumors of multiple cancers with risk-stratification and monitor tumor response to anticancer therapies in mouse models. Currently, MT218 is in clinical trials for precision cancer MRMI. Herein, we will show that using targeted MRI contrast agents specific to abundant TME biomarkers is a pragmatic solution for effective precision cancer imaging in high spatial resolution. And thus, we illustrate a replicable approach for CA development that is vital for cancer MRMI.


Asunto(s)
Gadolinio , Neoplasias , Aminoácidos , Animales , Medios de Contraste/química , Fibrina , Fibronectinas/metabolismo , Gadolinio/química , Gadolinio DTPA , Compuestos Heterocíclicos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Ratones , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Proteínas Oncogénicas , Compuestos Organometálicos , Péptidos , Microambiente Tumoral
13.
Diabetologia ; 65(12): 2157-2171, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35920844

RESUMEN

AIMS/HYPOTHESIS: CD40 expressed in Müller cells is a central driver of diabetic retinopathy. CD40 causes phospholipase Cγ1 (PLCγ1)-dependent ATP release in Müller cells followed by purinergic receptor (P2X7)-dependent production of proinflammatory cytokines in myeloid cells. In the diabetic retina, CD40 and P2X7 upregulate a broad range of inflammatory molecules that promote development of diabetic retinopathy. The molecular event downstream of CD40 that activates the PLCγ1-ATP-P2X7-proinflammatory cytokine cascade and promotes development of diabetic retinopathy is unknown. We hypothesise that disruption of the CD40-driven molecular events that trigger this cascade prevents/treats diabetic retinopathy in mice. METHODS: B6 and transgenic mice with Müller cell-restricted expression of wild-type (WT) CD40 or CD40 with mutations in TNF receptor-associated factor (TRAF) binding sites were made diabetic using streptozotocin. Leucostasis was assessed using FITC-conjugated concanavalin A. Histopathology was examined in the retinal vasculature. Expression of inflammatory molecules and phospho-Tyr783 PLCγ1 (p-PLCγ1) were assessed using real-time PCR, immunoblot and/or immunohistochemistry. Release of ATP and cytokines were measured by ATP bioluminescence and ELISA, respectively. RESULTS: Human Müller cells with CD40 ΔT2,3 (lacks TRAF2,3 binding sites) were unable to phosphorylate PLCγ1 and release ATP in response to CD40 ligation, and could not induce TNF-α/IL-1ß secretion in bystander myeloid cells. CD40-TRAF signalling acted via Src to induce PLCγ1 phosphorylation. Diabetic mice in which WT CD40 in Müller cells was replaced by CD40 ΔT2,3 failed to exhibit phosphorylation of PLCγ1 in these cells and upregulate P2X7 and TNF-α in microglia/macrophages. P2x7 (also known as P2rx7), Tnf-α (also known as Tnf), Il-1ß (also known as Il1b), Nos2, Icam-1 (also known as Icam1) and Ccl2 mRNA were not increased in these mice and the mice did not develop retinal leucostasis and capillary degeneration. Diabetic B6 mice treated intravitreally with a cell-permeable peptide that disrupts CD40-TRAF2,3 signalling did not exhibit either upregulation of P2X7 and inflammatory molecules in the retina or leucostasis. CONCLUSIONS/INTERPRETATION: CD40-TRAF2,3 signalling activated the CD40-PLCγ1-ATP-P2X7-proinflammatory cytokine pathway. Src functioned as a link between CD40-TRAF2,3 and PLCγ1. Replacing WT CD40 with CD40 ΔT2,3 impaired activation of PLCγ1 in Müller cells, upregulation of P2X7 in microglia/macrophages, upregulation of a broad range of inflammatory molecules in the diabetic retina and the development of diabetic retinopathy. Administration of a peptide that disrupts CD40-TRAF2,3 signalling reduced retinal expression of inflammatory molecules and reduced leucostasis in diabetic mice, supporting the therapeutic potential of pharmacological inhibition of CD40-TRAF2,3 in diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratones , Humanos , Animales , Células Ependimogliales/metabolismo , Retinopatía Diabética/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Antígenos CD40 , Retina/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Péptidos , Adenosina Trifosfato/metabolismo , Mutación
14.
ACS Omega ; 7(26): 22743-22753, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35811871

RESUMEN

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is a proven oncogenic lncRNA across multiple cancer types. Its effects on cancer cell migration and invasion position it as a potential target for therapy on multiple levels of gene regulation. DANCR is overexpressed in non-small cell lung cancer (NSCLC), the most common lung cancer subtype with poor patient survival. To effectively deliver small interfering RNA (siRNA) against DANCR for NSCLC therapy, we used arginine-glycine-aspartic acid (RGD)-poly(ethylene glycol) (PEG)-(1-aminoethyl)-iminobis[N-oleicylcysteinyl-1-aminoethyl)propionamide] (ECO)/small interfering RNA against DANCR (siDANCR) nanoparticles to transfect A549 and NCI-H1299 cells. Over 90% DANCR silencing was observed along with inhibition of cell migration, invasion, and spheroid formation relative to transfection with negative control siRNA in RGD-PEG-ECO nanoparticles. DANCR knockdown further showed efficacy in reducing migration and invasion of epidermal growth factor receptor (EGFR)-inhibitor resistant NSCLC along with resensitization to the inhibitor. RGD-PEG-ECO/siDANCR demonstrated silencing for up to 7 d following a single transfection. The results suggest nanoparticle-mediated RNA interference against DANCR as a potential approach for NSCLC treatment by regulating cell migration and invasion in addition to improving EGFR inhibitor response.

15.
Invest Radiol ; 57(10): 639-654, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35703463

RESUMEN

OBJECTIVES: Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS: Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS: At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 µM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION: The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.


Asunto(s)
Medios de Contraste , Neoplasias de la Próstata , Animales , Quelantes , Medios de Contraste/farmacocinética , Perros , Fibronectinas , Hemólisis , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Neoplasias de la Próstata/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Distribución Tisular
16.
ACS Appl Bio Mater ; 5(2): 451-458, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35148050

RESUMEN

MRI is increasingly utilized for the diagnosis of liver disease and focal liver lesions. Although liver-targeted gadolinium-based contrast agents (GBCAs) have high efficacy, there continue to be safety concerns regarding release of toxic Gd(III) ions. Herein, Mn(EOB-PC2A) is synthesized as a nongadolinium alternative for liver-specific MRI. Mn(EOB-PC2A) has an r1 relaxivity of 2.8 mM-1 s-1 in Dulbecco's phosphate-buffered saline (DPBS) and 5.9 mM-1 s-1 in saline containing human serum albumin at 1.5 T. It has a strong uptake in hepatocytes with minimal toxicity and demonstrated robust liver-specific enhancement at a dose of 60 µmol/kg. Mn(EOB-PC2A) is a promising liver-specific contrast agent for liver MRI.


Asunto(s)
Gadolinio DTPA , Manganeso , Compuestos de Azabiciclo , Medios de Contraste , Humanos , Iones , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética
17.
Magn Reson Imaging ; 86: 37-45, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801672

RESUMEN

Extradomain-B Fibronectin (EDB-FN) is an oncomarker that can be visualized with magnetic resonance molecular imaging (MRMI) to detect pancreatic ductal adenocarcinoma (PDAC) metastasis. In this study, we sought to assess the expression of EDB-FN in clinical samples of PDAC and to evaluate MRMI of PDAC metastasis with an EDB-FN-specific gadolinium-based contrast agent (MT218) in an orthotopic KPC-GFP-Luc mouse model. EDB-FN expression was evaluated in PDAC tissue samples through immunohistochemistry. RNA-Seq data obtained from the GEPIA2 project was evaluated to demonstrate EDB-FN expression in large patient cohorts. FLASH-3D MRI at 3 T of the KPC-GFP-Luc metastasis model was performed following injection of MT218. Tumor enhancement in MR images was correlated to postmortem distribution of KPC-GFP-Luc tumors using fluorescent and bright-field cryo-imaging and anatomical landmarks. EDB-FN immunohistochemical staining scores of human metastatic tumor stroma, (2.17 ± 0.271), metastatic tumor parenchyma (2.08 ± 0.229), primary tumor stroma (1.61 ± 0.26), and primary tumor parenchyma (1.61 ± 0.12) were significantly (p < 0.0001) higher than normal pancreas stroma (0.14 ± 0.10) and normal pancreas parenchyma (0.14 ± 0.14). EDB-FN mRNA expression in tumors is 4.98 log2(TPM + 1) and 0.18 log2(TPM + 1) in normal tissue (p < 0.01). A mouse model of EDB-FN rich PDAC metastasis exhibited T1-weighted contrast to noise (CNR) changes of 21.80 ± 4.34 in perimetastatic regions and 8.38 ± 0.79 in metastatic regions identified through cryo-imaging, significantly higher (p < 0.05) than CNR changes found in normal liver (-6.43 ± 0.92), mesentery (2.24 ± 0.92), spleen (-3.06 ± 2.38) and intestine (1.08 ± 2.15). We conclude that EDB-FN is overexpressed in metastatic and primary PDAC tumors and MRMI with MT218 enables the detection of metastatic and perimetastatic tissues.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/diagnóstico por imagen , Línea Celular Tumoral , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Ratones , Imagen Molecular , Neoplasias Pancreáticas/diagnóstico por imagen
18.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34681240

RESUMEN

Nucleic acids are promising for a variety of therapies, such as cancer therapy and the gene therapy of genetic disorders. The therapeutic efficacy of nucleic acids is reliant on the ability of their efficient delivery to the cytosol of the target cells. Amino lipids have been developed to aid in the cytosolic delivery of nucleic acids. This work reports a new and efficient synthetic pathway for the lipid carrier, (1-aminoethyl) iminobis [N-(oleicylcysteinyl-1-amino-ethyl)propionamide] (ECO). The previous synthesis of the ECO was inefficient and presented poor product quality control. A solution-phase synthesis of the ECO was explored, and each intermediate product was characterized with better quality control. The ECO was synthesized with a relatively high yield and high purity. The formulations of the ECO nanoparticles were made with siRNA, miRNA, or plasmid DNA, and characterized. The transfection efficiency of the nanoparticles was evaluated in vitro over a range of N/P ratios. The nanoparticles were consistent in size with previous formulations and had primarily a positive zeta potential. The ECO/siLuc nanoparticles resulted in potent luciferase silencing with minimal cytotoxicity. The ECO/miR-200c nanoparticles mediated the efficient delivery of miR-200c into the target cells. The ECO/pCMV-GFP nanoparticles resulted in substantial GFP expression upon transfection. These results demonstrate that the solution-phase synthetic pathway produced pure ECO for the efficient intracellular delivery of nucleic acids without size limitation.

19.
Sci Rep ; 11(1): 17527, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471169

RESUMEN

Cryo-imaging sections and images a whole mouse and provides ~ 120-GBytes of microscopic 3D color anatomy and fluorescence images, making fully manual analysis of metastases an onerous task. A convolutional neural network (CNN)-based metastases segmentation algorithm included three steps: candidate segmentation, candidate classification, and semi-automatic correction of the classification result. The candidate segmentation generated > 5000 candidates in each of the breast cancer-bearing mice. Random forest classifier with multi-scale CNN features and hand-crafted intensity and morphology features achieved 0.8645 ± 0.0858, 0.9738 ± 0.0074, and 0.9709 ± 0.0182 sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic (ROC), with fourfold cross validation. Classification results guided manual correction by an expert with our in-house MATLAB software. Finally, 225, 148, 165, and 344 metastases were identified in the four cancer mice. With CNN-based segmentation, the human intervention time was reduced from > 12 to ~ 2 h. We demonstrated that 4T1 breast cancer metastases spread to the lung, liver, bone, and brain. Assessing the size and distribution of metastases proves the usefulness and robustness of cryo-imaging and our software for evaluating new cancer imaging and therapeutics technologies. Application of the method with only minor modification to a pancreatic metastatic cancer model demonstrated generalizability to other tumor models.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Aprendizaje Profundo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Animales , Neoplasias Óseas/secundario , Neoplasias Encefálicas/secundario , Femenino , Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Ratones , Redes Neurales de la Computación
20.
Pharm Res ; 38(8): 1405-1418, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34389916

RESUMEN

PURPOSE: To investigate the effectiveness of targeted ECO/miR-200c in modulating tumor microenvironment and treating triple negative breast cancer (TNBC) using non-invasive magnetic resonance molecular imaging (MRMI) of extradomain B fibronectin (EDB-FN) with a targeted MRI contrast agent. METHODS: MDA-MB-231 and Hs578T TNBC cells were transfected with RGD-PEG-ECO/miR-200c. Invasive and migratory potential was evaluated using transwell, scratch wound, and spheroid formation assays. Athymic nude mice bearing orthotopic MDA-MB-231 and Hs578T xenografts were treated with weekly i.v. injection of RGD-PEG-ECO/miR-200c nanoparticles at 1.0 mg/kg/week RNA for 6 weeks. MRMI of EDB-FN was performed using a targeted contrast agent MT218 [ZD2-N3-Gd(DO3A)] on a 3 T MRS 3000 scanner. T1-weighted images were acquired following intravenous injection of MT218 at dose of 0.1 mmol/kg using a fast spin echo axial sequence with respiratory gating. RESULTS: Systemic administration of RGD-PEG-ECO/miR-200c nanoparticles in mice bearing orthotopic TNBC xenografts significantly suppressed tumor progression without toxic side-effects. MRMI with MT218 revealed that the treatment significantly suppressed tumor proliferation as compared to the control. MRMI also showed that the miR-200c treatment altered tumor microenvironment by reducing EDB-FN expression, as evidenced by decreased contrast enhancement in both MDA-MB-231 and Hs578T tumors. The reduction of EDB-FN was confirmed by immunohistochemistry. CONCLUSIONS: Targeted delivery of miR-200c with RGD-PEG-ECO/miR-200c nanoparticles effectively modulates tumor microenvironment and suppresses TNBC proliferation in animal models. MRMI of tumor EDB-FN expression is effective to non-invasively monitor tumor response and therapeutic efficacy of RGD-PEG-ECO/miR-200c nanoparticles in TNBC.


Asunto(s)
MicroARNs/administración & dosificación , Imagen Molecular/métodos , Nanopartículas/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Femenino , Fibronectinas/análisis , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , MicroARNs/análisis , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...