Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764469

RESUMEN

In the Central Nervous System (CNS), Nitric Oxide (NO) is mainly biosynthesized by neuronal Nitric Oxide Synthase (nNOS). The dysregulated activation of nNOS in neurons is critical in the development of different conditions affecting the CNS. The excessive production of NO by nNOS is responsible for a number of proteins' post-translational modifications (PTMs), which can lead to aberrant biochemical pathways, impairing CNS functions. In this review, we briefly revise the main implications of dysregulated nNOS in the progression of the most prevalent CNS neurodegenerative disorders, i.e., Alzheimer's disease (AD) and Parkinson's disease, as well as in the development of neuronal disorders. Moreover, a specific focus on compounds able to modulate nNOS activity as promising therapeutics to tackle different neuronal diseases is presented.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979026

RESUMEN

Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.

3.
Eur J Med Chem ; 248: 115112, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641860

RESUMEN

Triple negative breast cancer (TNBC) is a specific breast cancer subtype, and poor prognosis is associated to this tumour when it is in the metastatic form. The overexpression of the inducible Nitric Oxide Synthase (iNOS) is considered a predictor of poor outcome in TNBC patients, and this enzyme is reported as a valuable molecular target to compromise TNBC progression. In this work, new amidines containing a benzenesulfonamide group were designed and synthesized as selective iNOS inhibitors. An in vitro biological evaluation was performed to assess compounds activity against both the inducible and constitutive NOSs. The most interesting compounds 1b and 2b were evaluated on MDA-MB-231 cells as antiproliferative agents, and 1b capability to counteract cell migration was also studied. Finally, an in-depth docking study was performed to shed light on the observed potency and selectivity of action of the most promising compounds.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Óxido Nítrico Sintasa de Tipo II , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Amidinas/farmacología , Línea Celular Tumoral , Proliferación Celular , Bencenosulfonamidas
4.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498888

RESUMEN

Nitric oxide (NO) is a key messenger in physiological and pathological processes in mammals. An excessive NO production is associated with pathological conditions underlying the inflammation response as a trigger. Among others, dental pulp inflammation results from the invasion of dentin by pathogenic bacteria. Vital functions of pulp mesenchymal stem cells (DPSCs, dental pulp stem cells), such as mineralization, might be affected by the inducible NOS (iNOS) upregulation. In this context, the iNOS selective inhibition can be considered an innovative therapeutic strategy to counteract inflammation and to promote the regeneration of the dentin-pulp complex. The present work aims at evaluating two acetamidines structurally related to the selective iNOS inhibitor 1400W, namely CM544 and FAB1020, in a model of LPS-stimulated primary DPSCs. Our data reveal that CM544 and even more FAB1020 are promising anti-inflammatory compounds, decreasing IL-6 secretion by enhancing CD73 expression-levels, a protein involved in innate immunity processes and thus confirming an immunomodulatory role of DPSCs. In parallel, cell mineralization potential is retained in the presence of compounds as well as VEGF secretion, and thus their angiogenetic potential. Data presented lay the ground for further investigation on the anti-inflammatory potential of acetamidines selectively targeting iNOS in a clinical context.


Asunto(s)
Inflamación , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Células Madre , Humanos , Amidinas , Pulpa Dental/citología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Células Madre/citología , Calcificación Fisiológica
5.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296414

RESUMEN

Nitric oxide (NO) is a small free radical molecule biosynthesized by nitric oxide synthases (NOS), a family of oxidoreductases responsible for the conversion of the natural substrate L-arginine into L-citrulline and NO [...].


Asunto(s)
Citrulina , Óxido Nítrico , Citrulina/química , Óxido Nítrico Sintasa , Arginina/química
6.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36015085

RESUMEN

The antiproliferative effects played by benzothiazoles in different cancers have aroused the interest for these molecules as promising antitumor agents. In this work, a library of phenylacetamide derivatives containing the benzothiazole nucleus was synthesized and compounds were tested for their antiproliferative activity in paraganglioma and pancreatic cancer cell lines. The novel synthesized compounds induced a marked viability reduction at low micromolar concentrations both in paraganglioma and pancreatic cancer cells. Derivative 4l showed a greater antiproliferative effect and higher selectivity index against cancer cells, as compared to other compounds. Notably, combinations of derivative 4l with gemcitabine at low concentrations induced enhanced and synergistic effects on pancreatic cancer cell viability, thus supporting the relevance of compound 4l in the perspective of clinical translation. A target prediction analysis was also carried out on 4l by using multiple computational tools, identifying cannabinoid receptors and sentrin-specific proteases as putative targets contributing to the observed antiproliferative activity.

7.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35745586

RESUMEN

Triple negative breast cancer (TNBC) is an urgent as well as huge medical challenge, which is associated with poor prognosis and responsiveness to chemotherapies. Since epigenetic changes are highly implicated in TNBC tumorigenesis and development, inhibitors of histone deacetylases (HDACIs) could represent a promising therapeutic strategy. Although clinical trials involving single HDACIs showed disappointing results against TNBC, recent studies emphasize the high potential impact of HDACIs in controlling TNBC. In addition, encouraging results stem from new compounds designed to obtain isoform selectivity and/or polypharmacological HDAC approach. The present review provides a discussion of the HDACIs pharmacophoric models and of the structural modifications, leading to compounds with a potent activity against TNBC progression.

8.
Nutrients ; 14(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35276825

RESUMEN

It is well known that diet and nutrition play a critical role in the etiopathogenesis of many disorders. On the other hand, nutrients or bioactive compounds can specifically target and control various aspects of the mechanism underlying the pathology itself, and, in this context, diseases related to intestinal motility disorders stand out. The Herbal Mix (HM) consisting of Olea europea L. leaf (OEE) and Hibiscus sabdariffa L. (HSE) extracts (13:2) has been proven to be a promising nutraceutical option for many diseases, but its potential in inflammatory-driven gastrointestinal disorders is still unexplored. In this study, HM effects on guinea-pig ileum and colon contractility (induced or spontaneous) and on human iNOS activity, as well as on human colorectal adenocarcinoma Caco-2 cells, were studied. Results showed that the HM can control the ileum and colon contractility without blocking the progression of the food bolus, can selectively inhibit iNOS and possesses a strong pro-apoptotic activity towards Caco-2 cells. In conclusion, the present results suggest that, in some diseases, such as those related to motility disorders, an appropriate nutritional approach can be accompanied by a correct use of nutraceuticals that could help not only in ameliorating the symptoms but also in preventing more severe, cancer-related conditions.


Asunto(s)
Hibiscus , Olea , Animales , Células CACO-2 , Cobayas , Humanos , Extractos Vegetales/farmacología , Hojas de la Planta
9.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34681208

RESUMEN

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b-c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure-activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b-c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.

10.
Molecules ; 26(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34684867

RESUMEN

DES are mixtures of two or more compounds, able to form liquids upon mixing, with lower freezing points when compared to the individual constituents (eutectic mixtures). This attitude is due to the specific hydrogen-bond interactions network between the components of the mixture. A notable characteristic of DES is the possibility to develop tailor-made mixtures by changing the components ratios or a limited water dilution, for special applications, making them attractive for pharmaceutical purposes. In this review, we focused our attention on application of ChCl-based DES in the synthesis of pharmaceutical compounds. In this context, these eutectic mixtures can be used as solvents, solvents/catalysts, or as chemical donors and we explored some representative examples in recent literature of such applications.


Asunto(s)
Colina/química , Preparaciones Farmacéuticas/química , Solventes/química , Catálisis , Enlace de Hidrógeno , Solubilidad , Temperatura de Transición
11.
Eur J Med Chem ; 224: 113737, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34365129

RESUMEN

The exploration of innovative aromatase inhibitors represents an important approach for the identification of new therapeutic treatments of breast cancer. In this respect, a series of phenyldiazenyl sulfonamides was designed, synthesized and tested. Compounds 3b, 3f and 5f showed an aromatase inhibition in the micromolar range and were evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release), cell cycle analysis and apoptosis, revealing a dose-dependent inhibition profile. In particular, 3f displayed the best reduction in terms of metabolic activity and an anti-proliferative effect on MCF7 cells, being blocked in the G1/S phase checkpoint. Moreover, computational studies were carried out to better understand at a molecular level of detail the rationale behind the effective binding to the active site of aromatase of the more active inhibitor 3f. The obtained results allow to consider this compound as an interesting lead for the development of a new class of non-steroidal aromatase inhibitors.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Inhibidores de la Aromatasa/farmacología , Femenino , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/farmacología
12.
Molecules ; 26(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361571

RESUMEN

Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.e., 4-(ethanimidoylamino)-N-(4-fluorophenyl)benzamide hydrobromide (FAB1020) and N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamidedihydrochloride (CM554), on human LPS-stimulated monocytes, using the 1400 W compound as a comparison. Our results show that CM544 and FAB1020 are selective and decrease cytotoxicity, IL-6 secretion and LPS-stimulated monocyte migration. Furthermore, the modulation of iNOS, nitrotyrosine and Nrf2 were analyzed at the protein level. Based on the collected preliminary results, the promising therapeutic value of the investigated compounds emerges, as they appear able to modulate the pro-inflammatory LPS-stimulated response in the low micromolar range in human monocytes.


Asunto(s)
Amidinas/farmacología , Inhibidores Enzimáticos/farmacología , Lipopolisacáridos/toxicidad , Monocitos/enzimología , Óxido Nítrico Sintasa de Tipo II , Prolina/análogos & derivados , Humanos , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Prolina/farmacología
13.
J Enzyme Inhib Med Chem ; 36(1): 1632-1645, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34289751

RESUMEN

Nonsteroidal aromatase inhibitors (NSAIs) are well-established drugs for the therapy of breast cancer. However, they display some serious side effects, and their efficacy can be compromised by the development of chemoresistance. Previously, we have reported different indazole-based carbamates and piperidine-sulphonamides as potent aromatase inhibitors. Starting from the most promising compounds, here we have synthesised new indazole and triazole derivatives and evaluated their biological activity as potential dual agents, targeting both the aromatase and the inducible nitric oxide synthase, being this last dysregulated in breast cancer. Furthermore, selected compounds were evaluated as antiproliferative and cytotoxic agents in the MCF-7 cell line. Moreover, considering the therapeutic diversity of azole-based compounds, all the synthesized compounds were also evaluated as antifungals on different Candida strains. A docking study, as well as molecular dynamics simulation, were carried out to shed light on the binding mode of the most interesting compound into the different target enzymes catalytic sites.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Inhibidores de la Aromatasa/farmacología , Compuestos Azo/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Micosis/tratamiento farmacológico , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Compuestos Azo/síntesis química , Compuestos Azo/química , Candida/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad
14.
Eur J Med Chem ; 211: 113115, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33360796

RESUMEN

In the search for novel aromatase inhibitors, a series of triazole and imidazole-based carbamate derivatives were designed and synthesized. Final compounds were thus evaluated against human aromatase by in vitro kinetic experiments in a fluorimetric assay in comparison with letrozole. The effect of most active derivatives 13a and 15c was then evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release) and cell cycle analysis, revealing a dose-dependent inhibition profile of cell viability and low micromolar IC50 values. In addition, docking simulations were also carried out to elucidate at a molecular level of detail the binding modes adopted to target human aromatase.


Asunto(s)
Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/uso terapéutico , Carbamatos/síntesis química , Carbamatos/uso terapéutico , Imidazoles/síntesis química , Imidazoles/uso terapéutico , Triazoles/síntesis química , Triazoles/uso terapéutico , Inhibidores de la Aromatasa/farmacología , Carbamatos/farmacología , Diseño de Fármacos , Humanos , Imidazoles/farmacología , Estructura Molecular , Triazoles/farmacología
15.
ChemMedChem ; 15(22): 2157-2163, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32783298

RESUMEN

Under different pathological conditions, aberrant induction of neuronal nitric oxide synthase (nNOS) generates overproduction of NO that can cause irreversible cell damage. The aim of this study was to develop an amidoxime prodrug of a potent nNOS inhibitor, the benzhydryl acetamidine. We synthesized the benzhydryl acetamidoxime, which was evaluated in vitro to ascertain the potential NOS inhibitory activity, as well as conducting bioconversion into the parent acetamidine. The prodrug was also profiled for in vitro physicochemical properties, by determining the lipophilicity, passive permeation through the human gastrointestinal tract and across the blood-brain barrier by PAMPA, and chemical, enzymatic, and plasma stability. The obtained data demonstrate that the amidoxime prodrug shows an improved pharmacokinetic profile with respect to the acetamidine nNOS inhibitor, thus suggesting that it could be a promising lead compound to treat all those pathological conditions in which nNOS activity is dysregulated.


Asunto(s)
Amidinas/farmacología , Compuestos de Bencidrilo/farmacología , Inhibidores Enzimáticos/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Profármacos/farmacología , Amidinas/síntesis química , Amidinas/química , Compuestos de Bencidrilo/síntesis química , Compuestos de Bencidrilo/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Óxido Nítrico Sintasa de Tipo I/metabolismo , Profármacos/síntesis química , Profármacos/química , Proteínas Recombinantes/metabolismo
16.
ACS Med Chem Lett ; 11(7): 1470-1475, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32676156

RESUMEN

Nitric oxide is an important inflammation mediator with a recognized role in the development of different cancers. Gliomas are primary tumors of the central nervous system with poor prognosis, and the expression of the inducible nitric oxide synthase correlates with the degree of malignancy, changes in vascular reactivity, and neo-angiogenesis. Therefore, targeting the nitric oxide biosynthesis appears as a potential strategy to impair glioma progression. In the present work a set of aryl and amido-aryl acetamidine derivatives were synthesized to obtain new potent and selective inducible nitric oxide synthase inhibitors with improved physicochemical parameters with respect to the previously published molecules. Compound 17 emerged as the most promising inhibitor and was evaluated on C6 rat glioma cell line, showing antiproliferative effects and high selectivity over astrocytes.

17.
Molecules ; 25(11)2020 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517272

RESUMEN

Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.


Asunto(s)
Amidinas/química , Amidinas/farmacología , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Prolina/análogos & derivados , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Microglía/metabolismo , Microglía/patología , Prolina/farmacología , Transducción de Señal
18.
ACS Med Chem Lett ; 11(5): 624-632, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435362

RESUMEN

An agonist-antagonist switching strategy was performed to discover novel PPARα antagonists. Phenyldiazenyl derivatives of fibrates were developed, bearing sulfonimide or amide functional groups. A second series of compounds was synthesized, replacing the phenyldiazenyl moiety with amide or urea portions. Final compounds were screened by transactivation assay, showing good PPARα antagonism and selectivity at submicromolar concentrations. When tested in cancer cell models expressing PPARα, selected derivatives induced marked effects on cell viability. Notably, 3c, 3d, and 10e displayed remarkable antiproliferative effects in two paraganglioma cell lines, with CC50 lower than commercial PPARα antagonist GW6471 and a negligible toxicity on normal fibroblast cells. Docking studies were also performed to elucidate the binding mode of these compounds and to help interpretation of SAR data.

19.
ChemMedChem ; 15(4): 339-344, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851765

RESUMEN

Gliomas are the most prevalent primary tumors of the brain and spinal cord. Histologically, they share features of normal glial cells, but whether gliomas originate from normal glial cells, glial or neural precursors, stem cells, or other cell types remains a topic of investigation. The enhanced expression of inducible nitric oxide synthase (iNOS) has been reported as a hallmark of chemoresistance in gliomas, and several lines of evidence have reported that a decreased proliferation of glioma cells could be related to the selective inhibition of iNOS. This review aims to summarize the current understanding of iNOS expression and activity modulation in the regulation of glioma pathogenesis, along with compounds that could act as therapeutic agents against glioma.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Glioma/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Animales , Antineoplásicos/química , Inhibidores Enzimáticos/química , Glioma/metabolismo , Glioma/patología , Humanos , Óxido Nítrico Sintasa de Tipo II/metabolismo
20.
Eur J Med Chem ; 185: 111815, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732252

RESUMEN

In order to identify new aromatase enzyme inhibitors, thirty aryl sulfonamide derivatives containing an indole nucleus have been synthesized. The enzyme inhibition assay showed that four compounds inhibit aromatase in the sub-micromolar range. Loading concentrations of these four compounds were afterwards tested for cell viability and cytotoxicity on MCF7 human breast cancer cells, revealing a time- and dose-dependent decrease of active metabolizing cells over the time of the culture (0-72 h), starting from a concentration of 100 µM. Likewise LDH released raised up to 40% at early time of exposures (24 h). Finally, the docking study showed that the best active compounds efficiently bound in the active site of the aromatase; high values of HBD and low levels of HBA are the principal requirement evidenced by the QSAR model.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Indoles/farmacología , Sulfonamidas/farmacología , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...