Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 85(3): 839-852, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35654854

RESUMEN

Ongoing global warming is expected to alter temperature-dependent processes. Nevertheless, how co-occurring local drivers will influence temperature sensitivity of plant litter decomposition in lotic ecosystems remains uncertain. Here, we examined the temperature sensitivity of microbial-mediated decomposition, microbial respiration, fungal biomass and leaf nutrients of two plant species varying in litter quality. We also assessed whether the type of microbial community and stream water characteristics influence such responses to temperature. We incubated alder (Alnus glutinosa) and eucalypt (Eucalyptus globulus) litter discs in three streams differing in autumn-winter water temperature (range 4.6-8.9 °C). Simultaneously, in laboratory microcosms, litter discs microbially conditioned in these streams were incubated at 5, 10 and 15 °C with water from the conditioning stream and with a water control from an additional stream. Both in the field and in the laboratory, higher temperatures enhanced litter decomposition rates, except for eucalypt in the field. Leaf quality modified the response of decomposition to temperature in the field, with eucalypt leaf litter showing a lower increase, whereas it did not in the laboratory. The origin of microbial community only affected the decomposition rates in the laboratory, but it did not modify the response to temperature. Water quality only defined the phosphorus content of the leaf litter or the fungal biomass, but it did not modify the response to temperature. Our results suggest that the acceleration in decomposition by global warming will be shaped by local factors, mainly by leaf litter quality, in headwater streams.


Asunto(s)
Alnus , Ecosistema , Temperatura , Biomasa , Hojas de la Planta/microbiología , Alnus/microbiología , Agua Dulce
2.
Sci Total Environ ; 783: 147013, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33872895

RESUMEN

Human activities have greatly extended and intensified freshwater salinization, which threatens the structure and functioning of streams and rivers. Research on salt effects on in-stream processes has been strongly biased towards chronic salinization at constant levels. The aim of this study was to assess microbial mediated decomposition of two leaf species contrasting in quality (alder and oak) and associated descriptors, during salt-pulsed contamination (salinization period) and after cessation of salt additions (recovery period). Leaves were incubated in a mountain stream (central Portugal) longitudinally divided over 22 m. Half of the stream (salinized half) was subjected to daily short-term sharp salinity increases (conductivity up to ~48 mS cm-1) during 7 days while the other half (control half) was used as control. During the salinization period, salt exposure negatively affected mass loss and microbial respiration rate of alder (high-quality resource) while effects on fungal sporulation rate were independent of leaf quality. Fungal biomass was not impacted. After the recovery period, mass loss and respiration rate in both leaf species were similar between experimental stream halves. Fungal biomass associated with oak was enhanced and sporulation rate of alder, maintained in the previously salinized half, remained depressed. These results point out that the effects of salt pulses may be more deleterious in streams exclusively lined by high (vs. low) quality riparian trees as a result of a less efficient microbial-mediated leaf processing, and a reduced contribution to the conidial pool, even beyond the salinization period.


Asunto(s)
Alnus , Ríos , Hongos , Humanos , Hojas de la Planta , Portugal , Salinidad
3.
Ecology ; 100(12): e02847, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31351003

RESUMEN

Biodiversity loss is occurring globally at unprecedented rates, altering the functioning of the Earth's ecosystems. Multiple processes are often key components of ecosystem functioning, but it is unclear how biodiversity loss affects ecosystem multifunctionality (i.e., the ability of ecosystems to maintain multiple processes simultaneously). This is particularly true for some ecosystem types such as streams, which have been understudied, despite their key role in global biogeochemical cycles and their serious impairment by the widespread loss of riparian vegetation as a result of global change. Using a microcosm experiment, we tested whether losing riparian plant diversity affected stream multifunctionality, taking into account nine key processes related to litter decomposition, animal biomass production, and nutrient cycling, and simulating plant species loss from four to one in the presence or absence of litter-feeding detritivores. Multifunctionality increased with plant diversity in the presence of detritivores and decreased in their absence, evidencing a key role of detritivores in biodiversity-ecosystem-functioning (BEF) relationships. Moreover, by exploring effects of plant diversity on each process individually we were able to reveal potential mechanisms underlying BEF relationships; for example, effects of plant diversity on nutrient cycling occurred at least partly via indirect nutrient transfer, and were possibly accompanied by changes in microbial stoichiometry. Such mechanisms were unnoticeable when examining multifunctionality metrics, suggesting that individual processes provide crucial information to understand how stream ecosystem functioning is impaired by biodiversity loss.


Asunto(s)
Ecosistema , Ríos , Animales , Biodiversidad , Hojas de la Planta , Plantas
4.
PLoS One ; 13(5): e0198243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29813129

RESUMEN

Biodiversity loss in riparian forests has the potential to alter rates of leaf litter decomposition in stream ecosystems. However, studies have reported the full range of positive, negative and no effects of plant diversity loss on decomposition, and there is currently no explanation for such inconsistent results. Furthermore, it is uncertain whether plant diversity loss affects other ecological processes related to decomposition, such as fine particulate organic matter production or detritivore growth, which precludes a thorough understanding of how detrital stream food webs are impacted by plant diversity loss. We used a microcosm experiment to examine the effects of plant diversity loss on litter decomposition, fine particulate organic matter production, and growth of a dominant leaf-shredding detritivore, using litter mixtures varying in species composition. We hypothesized that plant diversity loss would decrease the rates of all studied processes, but such effects would depend on the leaf traits present in litter mixtures (both their average values and their variability). Our findings partly supported our hypotheses, showing that plant diversity loss had a consistently negative effect on litter decomposition and fine particulate organic matter production (but not on detritivore growth) across litter mixtures, which was mediated by detritivores. Importantly, the magnitude of the diversity effect and the relative importance of different mechanisms underlying this effect (i.e., complementarity vs. selection) varied depending on the species composition of litter mixtures, mainly because of differences in litter nutritional quality and trait variability. Complementarity was prevalent but varied in size, with positive selection effects also occurring in some mixtures. Our results support the notion that loss of riparian plant species is detrimental to key stream ecosystem processes that drive detrital food webs, but that the magnitude of such effects largely depends on the the order of species loss.


Asunto(s)
Biodiversidad , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Hojas de la Planta/metabolismo , Ríos/química
5.
Microb Ecol ; 76(2): 328-339, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29417187

RESUMEN

Aquatic hyphomycetes represent a large component of the microbial assemblage that decomposes submerged leaf-litter in fluvial ecosystems. The structure and activity of these fungal decomposers depend on environmental factors. Fungal communities may adapt to local habitat conditions; however, little is known about how fungal communities respond to abrupt changes in factors such as nutrient availability and temperature. To respond to this question, we carried out a cross-transplantation experiment, which assessed the decomposer activity and structure of this microbial community on decaying leaves transplanted from a cold and oligotrophic stream (S1) to a warmer and nitrogen-richer one (S2) and vice versa. Results were compared to those from untransplanted leaves decomposing either at S1 or at S2. In terms of days, untransplanted leaves were decomposed at a similar rate in both streams; the change to warmer and nitrogen-richer waters (S1 ➔ S2) significantly enhanced the decomposition process while the reciprocal transplantation (S2 ➔ S1) did not alter decomposition rate. However, when standardizing the temperature effects by using degree-days, microbial decomposers under colder conditions were more efficient in terms of accumulated heat, independent of the initial or final incubation site. Regarding community structure, taxa richness and diversity of aquatic hyphomycetes appear to be favoured under warmer and richer conditions, increasing after transplantation to S2 but with little effect on the predominant taxa. However, the reciprocal transplantation (S2 ➔ S1) yielded a clear decline of the dominant taxa at S2 (Lunulospora curvula) in favour of the local dominant ones. Thus, effects of environmental changes on activity and community structure can be highly variable and not always clearly linked or reciprocal. Therefore, results from simplified experimental designs (e.g. artificial assemblages under laboratory conditions) must be taken with caution. Additional field studies and manipulative experimentation dealing with natural communities are required when trying to extend individual results to complex scenarios such as those projected by global change.


Asunto(s)
Hongos Mitospóricos/fisiología , Nutrientes , Ríos/microbiología , Temperatura , Océano Atlántico , Biodiversidad , Canadá , Ecosistema , Microbiología Ambiental , Microbiota , Hongos Mitospóricos/clasificación , Micobioma , Nitrógeno , Hojas de la Planta/microbiología , Ríos/química
6.
Sci Total Environ ; 599-600: 1241-1250, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28521387

RESUMEN

Climate change and anthropogenic disturbances are expected to lead to more intense and frequent droughts, with potentially severe effects on structure and function of perennial temperate streams. However, more information is required on whether streams flowing through basins already affected by exotic plantations will respond to droughts in the same way as streams under native forests. The recolonisation dynamics of benthic macroinvertebrate communities and leaf litter decomposition rates were examined in nine streams of oceanic-temperate climate that differed in catchment vegetation (three streams draining native deciduous forest, three in pine plantations and three in eucalypt plantations) after a marked drought. In each stream, five benthic samples were collected three times (ca. 1.5months between sampling dates) after flow recovery, and the taxonomic and functional trait compositions of the macroinvertebrate communities were analysed. The decomposition rate of Alnus glutinosa was measured in fine- and coarse-mesh litter bags. Benthic macroinvertebrate density, richness and diversity increased with time after flow recovery but only richness and diversity differed among stream types, with eucalypt streams showing the lowest values. Both the taxonomic and functional compositions of the macroinvertebrate community were dependent on vegetation type and time, with the differences among stream types diminishing over time. While leaf-litter decomposition rate did not depend on catchment vegetation after drought, detritivore activity was the lowest under eucalypt streams and it was positively correlated to benthic shredder density. Our results indicated that in these perennial temperate streams the catchment vegetation influenced the recovery of benthic macroinvertebrate communities after a period of drought, although the decomposition rate of leaf litter was not strongly affected. Greater understanding of the structural and functional responses of stream ecosystems to different stressors is required before the effects of expected more intense and frequent hydrological changes caused by climate change can be adequately forecast.

7.
Sci Total Environ ; 596-597: 465-480, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28458222

RESUMEN

River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos , Calidad del Agua
8.
Sci Total Environ ; 599-600: 1677-1684, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28535596

RESUMEN

Climate change is increasing overall temporal variability in precipitation resulting in a seasonal water availability, both increasing periods of flooding and water scarcity. During low water availability periods, the concentration of leachates from riparian vegetation increases, subsequently increasing dissolved organic matter (DOM). Moreover, shifts in riparian vegetation by land use changes impact the quantity and quality of DOM. Our objective was to test effects of increasing DOM concentrations from Eucalyptus grandis (one of the most cultivated tree species in the world) leachates on the metabolism (respiration, R; gross primary productivity, GPP) and extracellular enzyme activities (EEAs) of freshwater biofilms. To test effects of DOM concentrations on freshwater biofilm functions, we incubated commercial cellulose sponges in a freshwater pond to allow biofilm colonization, and then exposed biofilms to five different concentrations of leaf-litter leachates of E. grandis for five days. To test if responses to DOM concentrations varied with colonization stage of biofilms, we measured treatment effects on biofilms colonizing standard substrates after one, two, three and four weeks of colonization. Increases in leachates concentrations enhanced biofilm heterotrophy, increasing R rates and decreasing GPP. Leachate concentrations did not affect biofilm EEAs, and changes in biofilm metabolism were not explained by treatment-induced changes in biofilm biomass or stoichiometry. We detected the lowest production:respiration ratios, i.e. more heterotrophic assemblages, with the most concentrated leachate solution and the most advanced biofilm colonization stages. Shifts in quantity of dissolved organic matter in freshwaters may further influence ecosystem metabolism and carbon processing.


Asunto(s)
Biopelículas , Agua Dulce , Procesos Heterotróficos , Microbiología del Agua , Cambio Climático , Eucalyptus , Hojas de la Planta
9.
Sci Total Environ ; 503-504: 251-7, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24962591

RESUMEN

Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can override the flow intermittence effects.


Asunto(s)
Clima , Ecosistema , Hojas de la Planta , Ríos/química , Animales , Biodegradación Ambiental , Monitoreo del Ambiente , Invertebrados/fisiología , España , Movimientos del Agua
10.
FEMS Microbiol Ecol ; 87(1): 257-67, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24111990

RESUMEN

Despite predicted global warming, the temperature effects on headwater stream functioning are poorly understood. We studied these effects on microbial-mediated leaf decomposition and the performance of associated aquatic hyphomycete assemblages. Alder leaves were incubated in three streams differing in winter water temperature. Simultaneously, in laboratory, leaf discs conditioned in these streams were incubated at 5, 10 and 15 °C. We determined mass loss, leaf N and sporulation rate and diversity of aquatic hyphomycete communities. In the field, decomposition rate correlated positively with temperature. Decomposition rate and leaf N presented a positive trend with dissolved nutrients, suggesting that temperature was not the only factor determining the process velocity. Under controlled conditions, it was confirmed that decomposition rate and leaf N were positively correlated with temperature, leaves from the coldest stream responding most clearly. Sporulation rate correlated positively with temperature after 9 days of incubation, but negatively after 18 and 27 days. Temperature rise affected negatively the sporulating fungi richness and diversity only in the material from the coldest stream. Our results suggest that temperature is an important factor determining leaf processing and aquatic hyphomycete assemblages and that composition and activity of fungal communities adapted to cold environments could be more affected by temperature rises. Highlight: Leaf decomposition rate and associated fungal communities respond to temperature shifts in headwater streams.


Asunto(s)
Alnus/microbiología , Hongos/metabolismo , Ríos/microbiología , Árboles/microbiología , Alnus/metabolismo , Hongos/clasificación , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Temperatura , Árboles/metabolismo
11.
Sci Total Environ ; 458-460: 197-208, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23648449

RESUMEN

Terrestrial plant litter is important in sustaining stream food webs in forested headwaters. Leaf litter quality often decreases when native species are replaced by introduced species, and a lower quality of leaf litter inputs may alter litter decomposition at sites afforested with non-native species. However, since detritivore composition and resource use plasticity may depend on the prevalent litter inputs, the extent of the alteration in decomposition can vary between streams. We tested 2 hypotheses using 2 native and 3 introduced species of tree differing in quality in 4 Iberian regions with contrasting vegetational traits: 1) decomposition rates of all plant species would be higher in regions where streams normally receive litter inputs of lower rather than higher quality; 2) a higher resource-use plasticity of detritivores in regions vegetated with plants of lower litter quality will cause a greater evenness in decomposition rates among plant species compared to regions where streams normally receive higher-quality plant litter inputs. Results showed a highly consistent interspecific ranking of decomposition rates across regions driven by litter quality, and a significant regional effect. Hypothesis 1 was supported: decomposition rates of the five litter types were generally higher in streams from regions vegetated with species producing leaf litter of low quality, possibly due to the profusion of caddisfly shredders in their communities. Hypothesis 2 was not supported: the relative differences in decomposition rates among leaf litter species remained essentially unaltered across regions. Our results suggest that, even in regions where detritivores can be comparatively efficient using resources of low quality, caution is needed particularly when afforestation programs introduce plant species of lower litter quality than the native species.


Asunto(s)
Cadena Alimentaria , Insectos/fisiología , Especies Introducidas , Hojas de la Planta/metabolismo , Ríos/química , Árboles , Análisis de Varianza , Animales , Sistemas de Información Geográfica , Insectos/metabolismo , Análisis de Componente Principal , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA