Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38748723

RESUMEN

The leiomodin (Lmod) family of actin-binding proteins play a critical role in muscle function, highlighted by the fact that mutations in all three family members (LMOD1-3) result in human myopathies. Mutations in the cardiac predominant isoform, LMOD2 lead to severe neonatal dilated cardiomyopathy. Most of the disease-causing mutations in the LMOD gene family are nonsense, or frameshift, mutations predicted to result in expression of truncated proteins. However, in nearly all cases of disease, little to no LMOD protein is expressed. We show here that nonsense-mediated mRNA decay, a cellular mechanism which eliminates mRNAs with premature termination codons, underlies loss of mutant protein from two independent LMOD2 disease-causing mutations. Furthermore, we generated steric-blocking oligonucleotides that obstruct deposition of the exon junction complex, preventing nonsense-mediated mRNA decay of mutant LMOD2 transcripts, thereby restoring mutant protein expression. Our investigation lays the initial groundwork for potential therapeutic intervention in LMOD-linked myopathies.


Asunto(s)
Codón sin Sentido , Degradación de ARNm Mediada por Codón sin Sentido , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Codón sin Sentido/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Sci Adv ; 10(11): eadk1890, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478604

RESUMEN

Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.


Asunto(s)
Contracción Muscular , Sarcómeros , Animales , Humanos , Ratones , Proteínas del Citoesqueleto/genética , Corazón , Ratones Noqueados , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Miosinas
3.
Proc Natl Acad Sci U S A ; 120(47): e2315820120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956287

RESUMEN

Actin is a highly expressed protein in eukaryotic cells and is essential for numerous cellular processes. In particular, efficient striated muscle contraction is dependent upon the precise regulation of actin-based thin filament structure and function. Alterations in the lengths of actin-thin filaments can lead to the development of myopathies. Leiomodins and tropomodulins are members of an actin-binding protein family that fine-tune thin filament lengths, and their dysfunction is implicated in muscle diseases. An Lmod3 mutation [G326R] was previously identified in patients with nemaline myopathy (NM), a severe skeletal muscle disorder; this residue is conserved among Lmod and Tmod isoforms and resides within their homologous leucine-rich repeat (LRR) domain. We mutated this glycine to arginine in Lmod and Tmod to determine the physiological function of this residue and domain. This G-to-R substitution disrupts Lmod and Tmod's LRR domain structure, altering their binding interface with actin and destroying their abilities to regulate thin filament lengths. Additionally, this mutation renders Lmod3 nonfunctional in vivo. We found that one single amino acid is essential for folding of Lmod and Tmod LRR domains, and thus is essential for the opposing actin-regulatory functions of Lmod (filament elongation) and Tmod (filament shortening), revealing a mechanism underlying the development of NM.


Asunto(s)
Actinas , Miopatías Nemalínicas , Humanos , Actinas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Sarcómeros/genética , Sarcómeros/metabolismo , Mutación , Músculo Esquelético/metabolismo
4.
Pulm Circ ; 11(4): 20458940211049002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631011

RESUMEN

Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli. Keywords: cytoskeleton, vascular barrier, sphingosine-1-phosphate, thrombin, focal adhesion kinase (FAK), Ena-VASP like protein (EVL), cytoskeletal regulatory protein.

5.
PLoS One ; 15(1): e0226138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31899774

RESUMEN

A novel cardiac-specific transgenic mouse model was generated to identify the physiological consequences of elongated thin filaments during post-natal development in the heart. Remarkably, increasing the expression levels in vivo of just one sarcomeric protein, Lmod2, results in ~10% longer thin filaments (up to 26% longer in some individual sarcomeres) that produce up to 50% less contractile force. Increasing the levels of Lmod2 in vivo (Lmod2-TG) also allows us to probe the contribution of Lmod2 in the progression of cardiac myopathy because Lmod2-TG mice present with a unique cardiomyopathy involving enlarged atrial and ventricular lumens, increased heart mass, disorganized myofibrils and eventually, heart failure. Turning off of Lmod2 transgene expression at postnatal day 3 successfully prevents thin filament elongation, as well as gross morphological and functional disease progression. We show here that Lmod2 has an essential role in regulating cardiac contractile force and function.


Asunto(s)
Citoesqueleto de Actina/patología , Cardiomiopatías/fisiopatología , Proteínas del Citoesqueleto/fisiología , Insuficiencia Cardíaca/etiología , Proteínas Musculares/fisiología , Músculo Esquelético/patología , Sarcómeros/patología , Animales , Animales Recién Nacidos , Femenino , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Transgénicos , Contracción Muscular
6.
Sci Adv ; 5(9): eaax2066, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31517052

RESUMEN

Neonatal heart failure is a rare, poorly-understood presentation of familial dilated cardiomyopathy (DCM). Exome sequencing in a neonate with severe DCM revealed a homozygous nonsense variant in leiomodin 2 (LMOD2, p.Trp398*). Leiomodins (Lmods) are actin-binding proteins that regulate actin filament assembly. While disease-causing mutations in smooth (LMOD1) and skeletal (LMOD3) muscle isoforms have been described, the cardiac (LMOD2) isoform has not been previously associated with human disease. Like our patient, Lmod2-null mice have severe early-onset DCM and die before weaning. The infant's explanted heart showed extraordinarily short thin filaments with isolated cardiomyocytes displaying a large reduction in maximum calcium-activated force production. The lack of extracardiac symptoms in Lmod2-null mice, and remarkable morphological and functional similarities between the patient and mouse model informed the decision to pursue cardiac transplantation in the patient. To our knowledge, this is the first report of aberrant cardiac thin filament assembly associated with human cardiomyopathy.


Asunto(s)
Citoesqueleto de Actina , Cardiomiopatía Dilatada , Codón sin Sentido , Proteínas del Citoesqueleto , Proteínas Musculares , Miocardio , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocardio/patología
7.
J Mol Cell Cardiol ; 122: 88-97, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30102883

RESUMEN

Leiomodin-2 (Lmod2) is a striated muscle-specific actin binding protein that is implicated in assembly of thin filaments. The necessity of Lmod2 in the adult mouse and role it plays in the mechanics of contraction are unknown. To answer these questions, we generated cardiac-specific conditional Lmod2 knockout mice (cKO). These mice die within a week of induction of the knockout with severe left ventricular systolic dysfunction and little change in cardiac morphology. Cardiac trabeculae isolated from cKO mice have a significant decrease in maximum force production and a blunting of myofilament length-dependent activation. Thin filaments are non-uniform and substantially reduced in length in cKO hearts, affecting the functional overlap of the thick and thin filaments. Remarkably, we also found that Lmod2 levels are directly linked to thin filament length and cardiac function in vivo, with a low amount (<20%) of Lmod2 necessary to maintain cardiac function. Thus, Lmod2 plays an essential role in maintaining proper cardiac thin filament length in adult mice, which in turn is necessary for proper generation of contractile force. Dysregulation of thin filament length in the absence of Lmod2 contributes to heart failure.


Asunto(s)
Proteínas del Citoesqueleto/genética , Insuficiencia Cardíaca/genética , Contracción Muscular/genética , Proteínas Musculares/genética , Miofibrillas/patología , Análisis de Varianza , Animales , Calcio/metabolismo , Ecocardiografía , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/patología , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Sarcómeros/patología , Disfunción Ventricular Izquierda/diagnóstico por imagen
8.
Mol Biol Cell ; 27(16): 2565-75, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307584

RESUMEN

Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Pollos , Proteínas del Citoesqueleto/genética , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Unión Proteica , Dominios Proteicos , Sarcómeros/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Tropomiosina/metabolismo
9.
Arch Biochem Biophys ; 601: 32-41, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26971467

RESUMEN

Contractile perturbations downstream of Ca(2+) binding to troponin C, the so-called sarcomere-controlled mechanisms, represent the earliest indicators of energy remodeling in the diseased heart [1]. Central to cellular energy "sensing" is the adenosine monophosphate-activated kinase (AMPK) pathway, which is known to directly target myofilament proteins and alter contractility [2-6]. We previously showed that the upstream AMPK kinase, LKB1/MO25/STRAD, impacts myofilament function independently of AMPK [5]. Therefore, we hypothesized that the LKB1 complex associated with myofilament proteins and that alterations in energy signaling modulated targeting or localization of the LKB1 complex to the myofilament. Using an integrated strategy of myofilament mechanics, immunoblot analysis, co-immunoprecipitation, mass spectroscopy, and immunofluorescence, we showed that 1) LKB1 and MO25 associated with myofibrillar proteins, 2) cellular energy stress re-distributed AMPK/LKB1 complex proteins within the sarcomere, and 3) the LKB1 complex localized to the Z-Disk and interacted with cytoskeletal and energy-regulating proteins, including vinculin and ATP Synthase (Complex V). These data represent a novel role for LKB1 complex proteins in myofilament function and myocellular "energy" sensing in the heart.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Troponina C/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Calcio/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Contracción Muscular , Ratas , Ratas Sprague-Dawley , Sarcómeros/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(44): 13573-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26487682

RESUMEN

Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatía Dilatada/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Citoesqueleto de Actina/genética , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/embriología , Cardiomiopatía Dilatada/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Genes Letales/genética , Corazón/embriología , Corazón/fisiopatología , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Contracción Muscular/genética , Contracción Muscular/fisiología , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/patología , Miocardio/ultraestructura , Sarcómeros/genética , Sarcómeros/metabolismo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA