Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
IEEE Trans Radiat Plasma Med Sci ; 5(5): 694-702, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34746539

RESUMEN

Development of a PET system capable of in-situ imaging requires a design that can accommodate the proton treatment beam nozzle. Among the several PET instrumentation approaches developed thus far, the dual-panel PET scanner is often used as it is simpler to develop and integrate within the proton therapy gantry. Partial-angle coverage of these systems can however lead to limited-angle artefacts in the reconstructed PET image. We have previously demonstrated via simulations that time-of-flight (TOF) reconstruction reduces the artifacts accompanying limited-angle data, and permits proton range measurement with 1-2 mm accuracy and precision. In this work we show measured results from a small proof-of-concept dual-panel PET system that uses TOF information to reconstruct PET data acquired after proton irradiation. The PET scanner comprises of two detector modules, each comprised of an array of 4×4×30 mm3 lanthanum bromide scintillator. Measurements are performed with an oxygen-rich gel-water, an adipose tissue equivalent material, and in vitro tissue phantoms. For each phantom measurement, 2 Gy dose was deposited using 54 - 100 MeV proton beams. For each phantom, a Monte Carlo simulation generating the expected distribution of PET isotope from the corresponding proton irradiation was also performed. Proton range was calculated by drawing multiple depth-profiles over a central region encompassing the proton dose deposition. For each profile, proton range was calculated using two techniques (a) 50% pick-off from the distal edge of the profile, and (b) comparing the measured and Monte Carlo profile to minimize the absolute sum of differences over the entire profile. A 10 min PET acquisition acquired with minimal delay post proton-irradiation is compared with a 10 min PET scan acquired after a 20 min delay. Measurements show that PET acquisition with minimal delay is necessary to collect 15O signal, and maximize 11C signal collection with a short PET acquisition. In comparison with the 50% pick-off technique, the shift technique is more robust and offers better precision in measuring the proton range for the different phantoms. Range measurements from PET images acquired with minimal delay, and the shift technique demonstrate the ability to achieve <1.5 mm accuracy and precision in estimating proton range.

2.
Radiat Oncol ; 16(1): 146, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362396

RESUMEN

BACKGROUND: A range pull-back device, such as a machine-related range shifter (MRS) or a universal patient-related range shifter (UPRS), is needed in pencil beam scanning technique to treat shallow tumors. METHODS: Three UPRS made by QFix (Avondale, PA, USA) allow treating targets across the body: U-shaped bolus (UB), anterior lateral bolus (ALB), and couch top bolus. Head-and-neck (HN) patients who used the UPRS were tested. The in-air spot sizes were measured and compared in this study at air gaps: 6 cm, 16 cm, and 26 cm. Measurements were performed in a solid water phantom using a single-field optimization pencil beam scanning field with the ALB placed at 0, 10, and 20 cm air gaps. The two-dimensional dose maps at the middle of the spread-out Bragg peak were measured using ion chamber array MatriXX PT (IBA-Dosimetry, Schwarzenbruck, Germany) located at isocenter and compared with the treatment planning system. RESULTS: A UPRS can be consistently placed close to the patient and maintains a relatively small spot size resulting in improved dose distributions. However, when a UPRS is non-removable (e.g. thick couch top), the quality of volumetric imaging is degraded due to their high Z material construction, hindering the value of Image-Guided Radiation Therapy (IGRT). Limitations of using UPRS with small air gaps include reduced couch weight limit, potential collision with patient or immobilization devices, and challenges using non-coplanar fields with certain UPRS. Our experience showed the combination of a U-shaped bolus exclusively for an HN target and an MRS as the complimentary device for head-and-neck targets as well as for all other treatment sites may be ideal to preserve the dosimetric advantages of pencil beam scanning proton treatments across the body. CONCLUSION: We have described how to implement UPRS and MRS for various clinical indications using the PBS technique, and comprehensively reviewed the advantage and disadvantages of UPRS and MRS. We recommend the removable UB only to be employed for the brain and HN treatments while an automated MRS is used for all proton beams that require RS but not convenient or feasible to use UB.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Algoritmos , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pronóstico , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X/métodos
3.
J Appl Clin Med Phys ; 19(5): 558-572, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30058170

RESUMEN

Monte Carlo (MC)-based dose calculations are generally superior to analytical dose calculations (ADC) in modeling the dose distribution for proton pencil beam scanning (PBS) treatments. The purpose of this paper is to present a methodology for commissioning and validating an accurate MC code for PBS utilizing a parameterized source model, including an implementation of a range shifter, that can independently check the ADC in commercial treatment planning system (TPS) and fast Monte Carlo dose calculation in opensource platform (MCsquare). The source model parameters (including beam size, angular divergence and energy spread) and protons per MU were extracted and tuned at the nozzle exit by comparing Tool for Particle Simulation (TOPAS) simulations with a series of commissioning measurements using scintillation screen/CCD camera detector and ionization chambers. The range shifter was simulated as an independent object with geometric and material information. The MC calculation platform was validated through comprehensive measurements of single spots, field size factors (FSF) and three-dimensional dose distributions of spread-out Bragg peaks (SOBPs), both without and with the range shifter. Differences in field size factors and absolute output at various depths of SOBPs between measurement and simulation were within 2.2%, with and without a range shifter, indicating an accurate source model. TOPAS was also validated against anthropomorphic lung phantom measurements. Comparison of dose distributions and DVHs for representative liver and lung cases between independent MC and analytical dose calculations from a commercial TPS further highlights the limitations of the ADC in situations of highly heterogeneous geometries. The fast MC platform has been implemented within our clinical practice to provide additional independent dose validation/QA of the commercial ADC for patient plans. Using the independent MC, we can more efficiently commission ADC by reducing the amount of measured data required for low dose "halo" modeling, especially when a range shifter is employed.


Asunto(s)
Terapia de Protones , Algoritmos , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
4.
Phys Med ; 50: 1-6, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29891088

RESUMEN

PURPOSE: Passive scattering proton radiotherapy utilizes beam-specific compensators to shape the dose to the distal end of the tumor target. These compensators typically require therapists to enter the treatment room to mount between beams. This study investigates a novel approach that utilizes a single patient-specific bolus to accomplish the role of multi-field compensators to improve the efficiency of the treatment delivery. METHODS: Ray-tracing from the proton virtual source was used to convert the beam-specific compensators (mounted on the gantry nozzle) into an equivalent bolus thickness on the patient surface. The field bolus contours were combined to create a single bolus. A 3D acrylic bolus was milled for a head phantom. The dose distribution of the compensator plan was compared to the bolus plan using 3D Gamma analysis and film measurements. Boluses for two clinical patients were also designed. RESULTS: The calculated phantom dose distribution of the original proton compensator plan was shown to be equivalent to the plan with the surface bolus. Film irradiations with the proton bolus also confirmed the dosimetric equivalence of the two techniques. The dose distribution equivalency of the bolus plans for the clinical patients were demonstrated. CONCLUSIONS: We presented a novel approach that uses a single patient-specific bolus to replace patient compensators during passive scattering proton delivery. This approach has the potential to reduce the treatment time, the compensator manufacturing costs, the risk of potential collision between the compensator and the patient/couch, and the waste of compensator material.


Asunto(s)
Fantasmas de Imagen , Terapia de Protones/instrumentación , Dispersión de Radiación , Humanos , Medicina de Precisión
5.
Phys Med Biol ; 63(5): 055016, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29513647

RESUMEN

A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at [Formula: see text] and [Formula: see text]. The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ([Formula: see text]), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample's water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.


Asunto(s)
Huesos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Riñón/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Fantasmas de Imagen , Protones , Tomografía Computarizada por Rayos X/métodos , Animales , Huesos/efectos de la radiación , Encéfalo/efectos de la radiación , Calibración , Bovinos , Riñón/efectos de la radiación , Músculo Esquelético/efectos de la radiación , Porcinos , Tomografía Computarizada por Rayos X/normas
7.
Int J Radiat Oncol Biol Phys ; 99(1): 210-218, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28816148

RESUMEN

PURPOSE: To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode. METHODS AND MATERIALS: A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan. RESULTS: In 6 treatment fractions recorded over 3 weeks, the mean (± standard deviation) range shifts aggregated over all spots in 9 energy layers were -0.8 ± 1.3 mm for the lateral field, 1.7 ± 0.7 mm for the right-superior-oblique field, and -0.4 ± 0.9 mm for the vertex field. CONCLUSIONS: This study demonstrates the feasibility and illustrates the distinctive benefits of prompt gamma imaging in pencil beam scanning treatment mode. Accuracy in range verification was found in this first clinical case to be better than the range uncertainty margin applied in the treatment plan. These first results lay the foundation for additional work toward tighter integration of the system for in vivo proton range verification and quantification of range uncertainties.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Cámaras gamma , Terapia de Protones/métodos , Cintigrafía/métodos , Fraccionamiento de la Dosis de Radiación , Diseño de Equipo , Estudios de Factibilidad , Humanos , Cintigrafía/instrumentación , Planificación de la Radioterapia Asistida por Computador
8.
Acta Oncol ; 56(4): 531-540, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28358666

RESUMEN

BACKGROUND: For lung tumors with large motion amplitudes, the use of proton pencil beam scanning (PBS) can produce large dose errors. In this study, we assess under what circumstances PBS can be used to treat lung cancer patients who exhibit large tumor motion, based on the quantification of tumor motion and the dose interplay. MATERIAL AND METHODS: PBS plans were optimized on average 4DCT datasets using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The magnitude of motion of voxels within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. RESULTS: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p < .001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. CONCLUSIONS: This study demonstrated that MI can predict the level of dose degradation, which potentially serves as a clinical decision tool to assess whether lung cancer patients are potentially suitable to receive PBS treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Artefactos , Fraccionamiento de la Dosis de Radiación , Tomografía Computarizada Cuatridimensional , Humanos , Movimiento (Física) , Movimiento
9.
J Appl Clin Med Phys ; 18(2): 44-49, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28300385

RESUMEN

AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run-time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater® phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi-spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid-range depth of multi-energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation.


Asunto(s)
Algoritmos , Benchmarking , Método de Montecarlo , Neoplasias/radioterapia , Fantasmas de Imagen , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Radiometría/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
10.
Med Phys ; 44(2): 703-712, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28133755

RESUMEN

PURPOSE: To determine whether individual liver tumor patients can be safely treated with pencil beam scanning proton therapy. This study reports a planning preparation workflow that can be used for beam angle selection and the evaluation of the efficacy of abdominal compression (AC) to mitigate motion. METHODS: Four-dimensional computed tomography scans (4DCT) with and without AC were available from 10 liver tumor patients with fluoroscopy-proven motion reduction by AC, previously treated using photons. For each scan, the motion amplitudes and the motion-induced variation of water-equivalent thickness (ΔWET) in each voxel of the target volume were evaluated during treatment plan preparation. Optimal proton beam angles were selected after volume analysis of the respective beam-specific planning target volume (BSPTV). M⊥80 and ΔWET80 derived from the 80th percentiles of perpendicular motion amplitude (M⊥ ) and ΔWET were compared with and without AC. Proton plans were created on the average CT to achieve target coverage similar to that of the conventional photon treatments. 4D dynamic dose calculation was performed postplan by synchronizing proton beam delivery timing patterns to the 4DCT phases to assess interplay and fractionation effects, and to determine motion criteria for subsequent patient treatment. RESULTS: Selected coplanar beam angles ranged between 180° and 39°, primarily from right lateral (oblique) and posterior (oblique) directions. While AC produced a significant reduction in mean Liver-GTV dose, any reduction in mean heart dose was patient dependent and not significant. Similarly, AC resulted in reductions in M⊥ , ΔWET, and BSPTV volumes and improved dose degradation (ΔD95 and ΔD1 ) within the CTV. For small motion (M⊥80 < 7 mm and ΔWET80 < 5 mm), motion mitigation was not needed. For moderate motion (M⊥80 7-10 mm or ΔWET80 5-7 mm), AC produced a modest improvement. For large motion (M⊥80 > 10 mm or ΔWET80 > 7 mm), AC and/or some other form of mitigation strategies were required. CONCLUSION: A workflow for screening patients' motion characteristics and optimizing beam angle selection was established for the pencil beam scanning proton therapy treatment of liver tumors. Abdominal compression was found to be useful at mitigation of moderate and large motion.


Asunto(s)
Abdomen , Neoplasias Hepáticas/fisiopatología , Neoplasias Hepáticas/radioterapia , Movimiento , Terapia de Protones , Fraccionamiento de la Dosis de Radiación , Femenino , Fluoroscopía , Tomografía Computarizada Cuatridimensional , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Masculino , Planificación de la Radioterapia Asistida por Computador , Respiración
11.
Med Phys ; 43(10): 5758, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27782709

RESUMEN

PURPOSE: Proton radiography (PR) and proton computed tomography (PCT) can be used to measure proton stopping power directly. However, practical and cost effective proton imaging detectors are not widely available. In this study, the authors investigated the feasibility of proton imaging using a silicon diode array. METHODS: A one-dimensional silicon diode detector array (1DSDA) was aligned with the central axis (CAX) of the proton beam. Polymethyl methacrylate (PMMA) slabs were used to find the correspondence between the water equivalent thickness (WET) and 1DSDA channel number. Two-dimensional proton radiographs were obtained by translation and rotation of a phantom relative to CAX while the proton nozzle and 1DSDA were kept stationary. A PCT image of one slice of the phantom was reconstructed using filtered backprojection. RESULTS: PR and PCT images of the PMMA cube were successfully acquired using the 1DSDA. The WET of the phantom was measured using PR data. The resolution and maximum error in WET measurement are 2.0 and 1.5 mm, respectively. Structures down to 2.0 mm in size could be resolved completely. Reconstruction of a PCT image showed very good agreement with simulation. Limitations in spatial resolution are attributed to limited spatial sampling, beam collimation, and proton scatter. CONCLUSIONS: The results demonstrate the feasibility of using silicon diode arrays for proton imaging. Such a device can potentially offer fast image acquisition and high spatial and energy resolution for PR and PCT.


Asunto(s)
Equipos y Suministros Eléctricos , Protones , Silicio , Tomografía Computarizada por Rayos X/instrumentación , Calibración , Fantasmas de Imagen
12.
J Appl Clin Med Phys ; 17(2): 427-440, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-27074464

RESUMEN

The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Terapia de Protones , Agua/química , Neoplasias de Cabeza y Cuello/patología , Humanos , Estadificación de Neoplasias , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
13.
Int J Radiat Oncol Biol Phys ; 95(1): 549-559, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084664

RESUMEN

PURPOSE: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. METHODS AND MATERIALS: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account for anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. RESULTS: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. CONCLUSIONS: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Agua Corporal/diagnóstico por imagen , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/efectos de la radiación , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Estudios Retrospectivos
14.
J Appl Clin Med Phys ; 16(6): 5678, 2015 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-26699580

RESUMEN

The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ± 3% uncertainty in stopping power and ± 3 mm uncertainty in patient setup in each direction, were used to create 8 × 12 × 10 = 960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p-values <0.05, with the exception of the heart V45 (p = 0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Torácicas/diagnóstico por imagen , Neoplasias Torácicas/radioterapia , Tomografía Computarizada Cuatridimensional/estadística & datos numéricos , Humanos , Movimiento , Órganos en Riesgo , Terapia de Protones/estadística & datos numéricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Incertidumbre
15.
Med Phys ; 42(9): 5138-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26328965

RESUMEN

PURPOSE: The purpose of this paper is to demonstrate the utility of a comprehensive test pattern in validating calculation models that include the halo component (low-dose tails) of proton pencil beam scanning (PBS) spots. Such a pattern has been used previously for quality assurance purposes to assess spot shape, position, and dose. METHODS: In this study, a scintillation detector was used to measure the test pattern in air at isocenter for two proton beam energies (115 and 225 MeV) of two IBA universal nozzles (UN #1 and UN #2). Planar measurements were compared with calculated dose distributions based on the weighted superposition of location-independent (UN #1) or location-dependent (UN #2) spot profiles, previously measured using a pair-magnification method and between two nozzles. RESULTS: Including the halo component below 1% of the central dose is shown to improve the gamma-map comparison between calculation and measurement from 94.9% to 98.4% using 2 mm/2% criteria for the 115 MeV proton beam of UN #1. In contrast, including the halo component below 1% of the central dose does not improve the gamma agreement for the 115 MeV proton beam of UN #2, due to the cutoff of the halo component at off-axis locations. When location-dependent spot profiles are used for calculation instead of spot profiles at central axis, the gamma agreement is improved from 98.0% to 99.5% using 2 mm/2% criteria. The two nozzles clearly have different characteristics, as a direct comparison of measured data shows a passing rate of 89.7% for the 115 MeV proton beam. At 225 MeV, the corresponding gamma comparisons agree better between measurement and calculation, and between measurements in the two nozzles. CONCLUSIONS: In addition to confirming the primary component of individual PBS spot profiles, a comprehensive test pattern is useful for the validation of the halo component at off-axis locations, especially for low energy protons.


Asunto(s)
Modelos Biológicos , Terapia de Protones , Garantía de la Calidad de Atención de Salud , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Conteo por Cintilación
16.
J Appl Clin Med Phys ; 16(3): 4959, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103473

RESUMEN

In electron and proton radiotherapy, applications of patient-specific electron bolus or proton compensators during radiation treatments are often necessary to accommodate patient body surface irregularities, tissue inhomogeneity, and variations in PTV depths to achieve desired dose distributions. Emerging 3D printing technologies provide alternative fabrication methods for these bolus and compensators. This study investigated the potential of utilizing 3D printing technologies for the fabrication of the electron bolus and proton compensators. Two printing technologies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two printing materials, PLA and polyamide, were investigated. Samples were printed and characterized with CT scan and under electron and proton beams. In addition, a software package was developed to convert electron bolus and proton compensator designs to printable Standard Tessellation Language file format. A phantom scalp electron bolus was printed with FDM technology with PLA material. The HU of the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. The profiles of the electron bolus and proton compensator were compared with the original designs. The average over all the CT slices of the largest Euclidean distance between the design and the fabricated bolus on each CT slice was found to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recommended that the properties of specific 3D printed objects are understood before being applied to radiotherapy treatments.


Asunto(s)
Electrones , Impresión Tridimensional/instrumentación , Protones , Radioterapia Conformacional/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Dispersión de Radiación
17.
J Appl Clin Med Phys ; 16(3): 5323, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103492

RESUMEN

The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is < 1% for the MatriXX PT. Therefore the MatriXX(Evolution) should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be > 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.


Asunto(s)
Terapia de Protones , Garantía de la Calidad de Atención de Salud/métodos , Radiometría/instrumentación , Radioterapia de Alta Energía/instrumentación , Radioterapia de Alta Energía/normas , Australia , Diseño de Equipo , Análisis de Falla de Equipo , Garantía de la Calidad de Atención de Salud/normas , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Rev Sci Instrum ; 86(4): 044301, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25933872

RESUMEN

Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.


Asunto(s)
Dosimetría por Película/instrumentación , Transferencia Lineal de Energía , Terapia de Protones/instrumentación , Método de Montecarlo
19.
Int J Radiat Oncol Biol Phys ; 90(5): 1186-94, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25442043

RESUMEN

PURPOSE: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. METHODS AND MATERIALS: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam delivering sequence of the worst-case scenario patient were synchronized to calculate the "true" dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. RESULTS: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D99 (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D99 was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. CONCLUSIONS: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a clinically acceptable level. One-field-per-day SFUD delivered twice is as robust as the bilateral SFUD plan treated daily over the course of treatment.


Asunto(s)
Movimiento , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Puntos Anatómicos de Referencia , Fraccionamiento de la Dosis de Radiación , Marcadores Fiduciales , Humanos , Masculino , Órganos en Riesgo/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Recto/diagnóstico por imagen , Recto/efectos de la radiación , Efectividad Biológica Relativa , Tomografía Computarizada por Rayos X , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/efectos de la radiación
20.
Phys Med Biol ; 59(22): 6859-73, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25349982

RESUMEN

The presence of a low-dose envelope, or 'halo', in the fluence profile of a proton spot can increase the output of a pencil beam scanning field by over 10%. This study evaluated whether the Monte Carlo simulation code, TOPAS 1.0-beta 8, based on Geant4.9.6 with its default physics list, can predict the spot halo at depth in phantom by incorporating a halo model within the proton source distribution. Proton sources were modelled using three 2D Gaussian functions, and optimized until simulated spot profiles matched measurements at the phantom surface out to a radius of 100 mm. Simulations were subsequently compared with profiles measured using EBT3 film in Solidwater® phantoms at various depths for 100, 115, 150, 180, 210 and 225 MeV proton beams. Simulations predict measured profiles within a 1 mm distance to agreement for 2D profiles extending to the 0.1% isodose, and within 1 mm/1% Gamma criteria over the integrated curve of spot profile as a function of radius. For isodose lines beyond 0.1% of the central spot dose, the simulated primary spot sigma is smaller than the measurement by up to 15%, and can differ by over 1 mm. The choice of particle interaction algorithm and phantom material were found to cause ~1 mm range uncertainty, a maximal 5% (0.3 mm) difference in spot sigma, and maximal 1 mm and ~2 mm distance to agreement in isodoses above and below the 0.1% level, respectively. Based on these observations, therefore, the selection of physics model and the application of Solidwater® as water replacement material in simulation and measurement should be used with caution.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Modelos Teóricos , Fantasmas de Imagen , Terapia de Protones/instrumentación , Terapia de Protones/métodos , Algoritmos , Humanos , Método de Montecarlo , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...