Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 14: 1154707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215665

RESUMEN

Introduction: Sustaining a mild traumatic brain injury (mTBI) has been linked to increased criminal behaviour in later life. However, previous studies have not controlled for the number of injuries, gender, social deprivation, impact of past behaviour, or link to offence type. This study aims to determine if people who experienced a single or multiple mTBI have increased risk of criminal behaviour 10 years post-injury than matched orthopaedic controls. Methods: This was a case control study of adults (aged >16 years) who experienced a medically diagnosed mTBI and controls who experienced a lower limb fracture (with no TBI) over a 12-month period (01/01/2003-31/12/2003). Participants were identified within Stats New Zealand's Integrated Data Infrastructure (national database including health and justice records). Participants who experienced a subsequent TBI (post-2003), who were not resident in New Zealand, and who died by 2013 were excluded. Case and controls were matched by age, sex, ethnicity, deprivation index and pre-injury criminal history. Results: The study included N = 6,606 mTBI cases and N = 15,771 matched trauma controls. In the 10 years after injury, people experiencing a single mTBI had significantly higher numbers of violent charges (0.26 versus 0.21, p < 0.01) and violent convictions (0.16 versus 0.13, p < 0.05) but not for all court charges and convictions. Analysis of those with a history of prior mTBIs yielded larger effects, with significantly higher numbers of violent charges (0.57 versus 0.24, p < 0.05) and violent convictions (0.34 versus 0.14, p < 0.05). For males, the single mTBI case group had a significantly higher number of violent charges (0.40 versus 0.31, p < 0.05) and violent convictions (0.24 versus 0.20, p < 0.05) but this was not observed for females or all offence types. Discussion: Experiencing multiple mTBIs over the lifetime increases the number of subsequent violence-related charges and convictions but not for all offence types in males but not for females. These findings highlight the need for improved recognition and treatment of mTBI to prevent future engagement in antisocial behaviour.

2.
Emerg Infect Dis ; 29(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823761

RESUMEN

Anaplasmosis, caused by the tickborne bacterium Anaplasma phagocytophilum, is an emerging public health threat in the United States. In the northeastern United States, the blacklegged tick (Ixodes scapularis) transmits the human pathogenic genetic variant of A. phagocytophilum (Ap-ha) and a nonpathogenic variant (Ap-V1). New York has recently experienced a rapid and geographically focused increase in cases of anaplasmosis. We analyzed A. phagocytophilum-infected I. scapularis ticks collected across New York during 2008-2020 to differentiate between variants and calculate an entomological risk index (ERI) for each. Ap-ha ERI varied between regions and increased in all regions during the final years of the study. Space-time scan analyses detected expanding clusters of Ap-ha located within documented anaplasmosis hotspots. Ap-ha ERI was more positively correlated with anaplasmosis incidence than non-genotyped A. phagocytophilum ERI. Our findings help elucidate the relationship between the spatial ecology of A. phagocytophilum variants and anaplasmosis.


Asunto(s)
Anaplasma phagocytophilum , Anaplasmosis , Ixodes , Animales , Humanos , Ixodes/microbiología , Anaplasma phagocytophilum/genética , Anaplasmosis/microbiología , New York , New England
3.
J Appl Ecol ; 59(11): 2779-2789, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36632519

RESUMEN

The causative bacterium of Lyme disease, Borrelia burgdorferi, expanded from an undetected human pathogen into the etiologic agent of the most common vector-borne disease in the United States over the last several decades. Systematic field collections of the tick vector reveal increases in the geographic range and prevalence of B. burgdorferi-infected ticks that coincided with increases in human Lyme disease incidence across New York State.We investigate the impact of environmental features on the population dynamics of B. burgdorferi. Analytical models developed using field collections of nearly 19,000 nymphal Ixodes scapularis and spatially and temporally explicit environmental features accurately explained the variation in the nymphal infection prevalence of B. burgdorferi across space and time.Importantly, the model identified environmental features reflecting landscape ecology, vertebrate hosts, climatic metrics, climate anomalies and surveillance efforts that can be used to predict the biogeographical patterns of B. burgdorferi-infected ticks into future years and in previously unsampled areas.Forecasting the distribution and prevalence of a pathogen at fine geographic scales offers a powerful strategy to mitigate a serious public health threat. Synthesis and applications. A decade of environmental and tick data was collected to create a model that accurately predicts the infection prevalence of Borrelia burgdorferi over space and time. This predictive model can be extrapolated to create a high-resolution risk map of the Lyme disease pathogen for future years that offers an inexpensive approach to improve both ecological management and public health strategies to mitigate disease risk.

4.
Emerg Infect Dis ; 27(8): 2154-2162, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287128

RESUMEN

Human granulocytic anaplasmosis, a tickborne disease caused by the bacterium Anaplasma phagocytophilum, was first identified during 1994 and is now an emerging public health threat in the United States. New York state (NYS) has experienced a recent increase in the incidence of anaplasmosis. We analyzed human case surveillance and tick surveillance data collected by the NYS Department of Health for spatiotemporal patterns of disease emergence. We describe the epidemiology and growing incidence of anaplasmosis cases reported during 2010-2018. Spatial analysis showed an expanding hot spot of anaplasmosis in the Capital Region, where incidence increased >8-fold. The prevalence of A. phagocytophilum increased greatly within tick populations in the Capital Region over the same period, and entomologic risk factors were correlated with disease incidence at a local level. These results indicate that anaplasmosis is rapidly emerging in a geographically focused area of NYS, likely driven by localized changes in exposure risk.


Asunto(s)
Anaplasma phagocytophilum , Anaplasmosis , Ixodes , Enfermedades por Picaduras de Garrapatas , Anaplasma phagocytophilum/genética , Anaplasmosis/epidemiología , Animales , Humanos , New York/epidemiología
5.
J Med Entomol ; 58(6): 2453-2466, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34289040

RESUMEN

Human granulocytic anaplasmosis (HGA) and human babesiosis are tick-borne diseases spread by the blacklegged tick (Ixodes scapularis Say, Acari: Ixodidae) and are the result of infection with Anaplasma phagocytophilum and Babesia microti, respectively. In New York State (NYS), incidence rates of these diseases increased concordantly until around 2013, when rates of HGA began to increase more rapidly than human babesiosis, and the spatial extent of the diseases diverged. Surveillance data of tick-borne pathogens (2007 to 2018) and reported human cases of HGA (n = 4,297) and human babesiosis (n = 2,986) (2013-2018) from the New York State Department of Health (NYSDOH) showed a positive association between the presence/temporal emergence of each pathogen and rates of disease in surrounding areas. Incidence rates of HGA were higher than human babesiosis among White and non-Hispanic/non-Latino individuals, as well as all age and sex groups. Human babesiosis exhibited higher rates among non-White individuals. Climate, weather, and landscape data were used to build a spatially weighted zero-inflated negative binomial (ZINB) model to examine and compare associations between the environment and rates of HGA and human babesiosis. HGA and human babesiosis ZINB models indicated similar associations with forest cover, forest land cover change, and winter minimum temperature; and differing associations with elevation, urban land cover change, and winter precipitation. These results indicate that tick-borne disease ecology varies between pathogens spread by I. scapularis.


Asunto(s)
Anaplasma phagocytophilum/fisiología , Anaplasmosis/epidemiología , Babesia microti/microbiología , Babesia microti/parasitología , Babesiosis/epidemiología , Clima , Ixodes/microbiología , Anaplasmosis/microbiología , Animales , Babesiosis/parasitología , Humanos , Incidencia , New York/epidemiología , Prevalencia , Análisis Espacial
6.
Int J Parasitol ; 51(4): 311-320, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359203

RESUMEN

Many species have experienced dramatic changes in both geographic range and population sizes in recent history. Increases in the geographic range or population size of disease vectors have public health relevance as these increases often precipitate the emergence of infectious diseases in human populations. Accurately identifying environmental factors affecting the biogeographic patterns of vector species is a long-standing analytical challenge, stemming from a paucity of data capturing periods of rapid changes in vector demographics. We systematically investigated the occurrence and abundance of nymphal Ixodes scapularis ticks at 532 sampling locations throughout New York State (NY), USA, between 2008 and 2018, a time frame that encompasses the emergence of diseases vectored by these ticks. Analyses of these field-collected data demonstrated a range expansion into northern and western NY during the last decade. Nymphal abundances increased in newly colonised areas, while remaining stable in areas with long-standing populations over the last decade. These trends in the geographic range and abundance of nymphs correspond to both the geographic expansion of human Lyme disease cases and increases in incidence rates. Analytic models fitted to these data incorporating time, space, and environmental factors, accurately identified drivers of the observed changes in nymphal occurrence and abundance. These models accounted for the spatial and temporal variation in the occurrence and abundance of nymphs and can accurately predict nymphal population patterns in future years. Forecasting disease risk at fine spatial scales prior to the transmission season can influence both public health mitigation strategies and individual behaviours, potentially impacting tick-borne disease risk and subsequently human disease incidence.


Asunto(s)
Ixodes , Enfermedad de Lyme , Enfermedades por Picaduras de Garrapatas , Animales , Humanos , Enfermedad de Lyme/epidemiología , Ninfa , Densidad de Población
7.
Ticks Tick Borne Dis ; 8(3): 407-411, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28131594

RESUMEN

Borrelia miyamotoi (Bm) is a recently emerging bacterial agent transmitted by several species of ixodid ticks. Diagnosis of Bm infection can be challenging, as the organism is not easily cultivable. We have developed and validated a multiplex real-time PCR to simultaneously identify Bm infection and the agents causing human granulocytic anaplasmosis and human monocytic ehrlichiosis, Anaplasma phagocytophilum and Ehrlichia chaffeensis, respectively. The assay is 100% specific; highly sensitive, detecting 11 gene copies of Bm DNA in both whole blood and cerebral spinal fluid; and provides rapid results in less than two hours. A retrospective study of 796 clinical specimens collected between the years 2012 and 2014 and a prospective study of 366 clinical specimens were performed utilizing this novel assay to evaluate the frequency of Bm infection in New York State (NYS). Eight clinical specimens (1%) were found to be positive for Bm, 216 were positive for A. phagocytophilum, and 10 were positive for E. chaffeensis. Additionally, we tested 411 I. scapularis ticks collected in NYS during 2013 and 2014 in a separate multiplex real-time PCR to determine the prevalence of Bm, A. phagocytophilum, Borrelia burgdorferi s.s., and Borrelia species. Our results indicated rates of 1.5%, 27%, 19.7%, and 8.8% respectively. The ability to monitor both the frequency and geographic distribution of Bm cases and the prevalence and geographic distribution of Bm in ticks will help create a better understanding of this emerging tick-borne pathogen.


Asunto(s)
Infecciones por Borrelia/epidemiología , Borrelia/aislamiento & purificación , Ixodes/microbiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/aislamiento & purificación , Anaplasma phagocytophilum/patogenicidad , Anaplasmosis/diagnóstico , Anaplasmosis/microbiología , Animales , Proteínas Bacterianas/genética , Borrelia/clasificación , Borrelia/genética , Borrelia/patogenicidad , Infecciones por Borrelia/diagnóstico , Infecciones por Borrelia/microbiología , Borrelia burgdorferi/genética , Borrelia burgdorferi/aislamiento & purificación , Borrelia burgdorferi/patogenicidad , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/aislamiento & purificación , Ehrlichia chaffeensis/patogenicidad , Ehrlichiosis/sangre , Ehrlichiosis/diagnóstico , Ehrlichiosis/enzimología , Ehrlichiosis/microbiología , Humanos , New York/epidemiología , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Enfermedades por Picaduras de Garrapatas/diagnóstico , Enfermedades por Picaduras de Garrapatas/microbiología
8.
Nat Struct Biol ; 9(11): 806-11, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12379841

RESUMEN

I-TevI, a member of the GIY-YIG family of homing endonucleases, consists of an N-terminal catalytic domain and a C-terminal DNA-binding domain joined by a flexible linker. The GIY-YIG motif is in the N-terminal domain of I-TevI, which corresponds to a phylogenetically widespread catalytic cartridge that is often associated with mobile genetic elements. The crystal structure of the catalytic domain of I-TevI, the first of any GIY-YIG endonuclease, reveals a novel alpha/beta-fold with a central three-stranded antiparallel beta-sheet flanked by three helices. The most conserved and putative catalytic residues are located on a shallow, concave surface and include a metal coordination site. Similarities in the three-dimensional arrangement of the catalytically important residues and the cation-binding site with those of the His-Cys box endonuclease I-PpoI suggest the possibility of mechanistic relationships among these different families of homing endonucleases despite completely different folds.


Asunto(s)
Endodesoxirribonucleasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...