Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38798654

RESUMEN

Mature astrocytes become activated upon non-specific tissue damage and contribute to glial scar formation. Proliferation and migration of adult reactive astrocytes after injury is considered very limited. However, the regenerative behavior of individual astrocytes following selective astroglial loss, as seen in astrocytopathies, such as neuromyelitis optica spectrum disorder, remains unexplored. Here, we performed longitudinal in vivo imaging of cortical astrocytes after focal astrocyte ablation in mice. We discovered that perilesional astrocytes develop a remarkable plasticity for efficient lesion repopulation. A subset of mature astrocytes transforms into reactive progenitor-like (REPL) astrocytes that not only undergo multiple asymmetric divisions but also remain in a multinucleated interstage. This regenerative response facilitates efficient migration of newly formed daughter cell nuclei towards unoccupied astrocyte territories. Our findings define the cellular principles of astrocyte plasticity upon focal lesion, unravelling the REPL phenotype as a fundamental regenerative strategy of mature astrocytes to restore astrocytic networks in the adult mammalian brain. Promoting this regenerative phenotype bears therapeutic potential for neurological conditions involving glial dysfunction.

2.
J Am Chem Soc ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592946

RESUMEN

Selectively labeling cells with damaged membranes is needed not only for identifying dead cells in culture, but also for imaging membrane barrier dysfunction in pathologies in vivo. Most membrane permeability stains are permanently colored or fluorescent dyes that need washing to remove their non-uptaken extracellular background and reach good image contrast. Others are DNA-binding environment-dependent fluorophores, which lack design modularity, have potential toxicity, and can only detect permeabilization of cell volumes containing a nucleus (i.e., cannot delineate damaged volumes in vivo nor image non-nucleated cell types or compartments). Here, we develop modular fluorogenic probes that reveal the whole cytosolic volume of damaged cells, with near-zero background fluorescence so that no washing is needed. We identify a specific disulfonated fluorogenic probe type that only enters cells with damaged membranes, then is enzymatically activated and marks them. The esterase probe MDG1 is a reliable tool to reveal live cells that have been permeabilized by biological, biochemical, or physical membrane damage, and it can be used in multicolor microscopy. We confirm the modularity of this approach by also adapting it for improved hydrolytic stability, as the redox probe MDG2. We conclude by showing the unique performance of MDG probes in revealing axonal membrane damage (which DNA fluorogens cannot achieve) and in discriminating damage on a cell-by-cell basis in embryos in vivo. The MDG design thus provides powerful modular tools for wash-free in vivo imaging of membrane damage, and indicates how designs may be adapted for selective delivery of drug cargoes to these damaged cells: offering an outlook from selective diagnosis toward therapy of membrane-compromised cells in disease.

3.
EBioMedicine ; 100: 104982, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306899

RESUMEN

BACKGROUND: Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS: We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS: We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION: We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING: This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Sustancia Blanca , Porcinos , Humanos , Animales , Ratones , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Cuprizona , Porcinos Enanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Sustancia Blanca/patología , Microscopía Electrónica , Modelos Animales de Enfermedad
4.
Nat Biotechnol ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957343
5.
Science ; 381(6655): 285-290, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471539

RESUMEN

Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared with controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. Depletion of macrophages in the SCG prevented disease-associated denervation of the pineal gland and restored physiological melatonin secretion. Our data identify the mechanism by which diurnal rhythmicity in cardiac disease is disturbed and suggest a target for therapeutic intervention.


Asunto(s)
Ritmo Circadiano , Cardiopatías , Macrófagos , Melatonina , Glándula Pineal , Trastornos del Sueño del Ritmo Circadiano , Ganglio Cervical Superior , Animales , Humanos , Ratones , Cardiopatías/fisiopatología , Melatonina/metabolismo , Glándula Pineal/patología , Glándula Pineal/fisiopatología , Sueño , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Ganglio Cervical Superior/patología , Ganglio Cervical Superior/fisiopatología , Macrófagos/inmunología , Fibrosis
6.
Nat Metab ; 5(8): 1364-1381, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37430025

RESUMEN

Inflammation in the central nervous system can impair the function of neuronal mitochondria and contributes to axon degeneration in the common neuroinflammatory disease multiple sclerosis (MS). Here we combine cell-type-specific mitochondrial proteomics with in vivo biosensor imaging to dissect how inflammation alters the molecular composition and functional capacity of neuronal mitochondria. We show that neuroinflammatory lesions in the mouse spinal cord cause widespread and persisting axonal ATP deficiency, which precedes mitochondrial oxidation and calcium overload. This axonal energy deficiency is associated with impaired electron transport chain function, but also an upstream imbalance of tricarboxylic acid (TCA) cycle enzymes, with several, including key rate-limiting, enzymes being depleted in neuronal mitochondria in experimental models and in MS lesions. Notably, viral overexpression of individual TCA enzymes can ameliorate the axonal energy deficits in neuroinflammatory lesions, suggesting that TCA cycle dysfunction in MS may be amendable to therapy.


Asunto(s)
Esclerosis Múltiple , Enfermedades Neuroinflamatorias , Animales , Ratones , Axones/patología , Esclerosis Múltiple/patología , Neuronas/patología , Inflamación/patología
7.
Methods Cell Biol ; 177: 125-170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37451765

RESUMEN

In this chapter, we review Automated Tape Collecting Ultramicrotomy (ATUM), which, among other array tomography methods, substantially simplified large-scale volume electron microscopy (vEM) projects. vEM reveals biological structures at nanometer resolution in three dimensions and resolves ambiguities of two-dimensional representations. However, as the structures of interest-like disease hallmarks emerging from neuropathology-are often rare but the field of view is small, this can easily turn a vEM project into a needle in a haystack problem. One solution for this is correlated light and electron microscopy (CLEM), providing tissue context, dynamic and molecular features before switching to targeted vEM to hone in on the object's ultrastructure. This requires precise coordinate transfer between the two imaging modalities (e.g., by micro computed tomography), especially for block face vEM which relies on physical destruction of sections. With array tomography methods, serial ultrathin sections are collected into a tissue library, thus allowing storage of precious samples like human biopsies and enabling repetitive imaging at different resolution levels for an SEM-based search strategy. For this, ATUM has been developed to reliably collect serial ultrathin sections via a conveyor belt onto a plastic tape that is later mounted onto silicon wafers for serial scanning EM (SEM). The ATUM-SEM procedure is highly modular and can be divided into sample preparation, serial ultramicrotomy onto tape, mounting, serial image acquisition-after which the acquired image stacks can be used for analysis. Here, we describe the steps of this workflow and how ATUM-SEM enables targeting and high resolution imaging of specific structures. ATUM-SEM is widely applicable. To illustrate this, we exemplify the approach by reconstructions of focal pathology in an Alzheimer mouse model and CLEM of a specific cortical synapse.


Asunto(s)
Microtomía , Microscopía Electrónica de Volumen , Ratones , Animales , Humanos , Microscopía Electrónica de Rastreo , Microtomografía por Rayos X , Microtomía/métodos , Neuronas , Imagenología Tridimensional/métodos
8.
Nat Protoc ; 18(7): 2181-2220, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328604

RESUMEN

Mitochondria are key bioenergetic organelles involved in many biosynthetic and signaling pathways. However, their differential contribution to specific functions of cells within complex tissues is difficult to dissect with current methods. The present protocol addresses this need by enabling the ex vivo immunocapture of cell-type-specific mitochondria directly from their tissue context through a MitoTag reporter mouse. While other available methods were developed for bulk mitochondria isolation or more abundant cell-type-specific mitochondria, this protocol was optimized for the selective isolation of functional mitochondria from medium-to-low-abundant cell types in a heterogeneous tissue, such as the central nervous system. The protocol has three major parts: First, mitochondria of a cell type of interest are tagged via an outer mitochondrial membrane eGFP by crossing MitoTag mice to a cell-type-specific Cre-driver line or by delivery of viral vectors for Cre expression. Second, homogenates are prepared from relevant tissues by nitrogen cavitation, from which tagged organelles are immunocaptured using magnetic microbeads. Third, immunocaptured mitochondria are used for downstream assays, e.g., to probe respiratory capacity or calcium handling, revealing cell-type-specific mitochondrial diversity in molecular composition and function. The MitoTag approach enables the identification of marker proteins to label cell-type-specific organelle populations in situ, elucidates cell-type-enriched mitochondrial metabolic and signaling pathways, and reveals functional mitochondrial diversity between adjacent cell types in complex tissues, such as the brain. Apart from establishing the mouse colony (6-8 weeks without import), the immunocapture protocol takes 2 h and functional assays require 1-2 h.


Asunto(s)
Encéfalo , Mitocondrias , Ratones , Animales , Mitocondrias/metabolismo , Línea Celular , Encéfalo/metabolismo , Magnetismo , Metabolismo Energético
9.
Neuron ; 111(11): 1748-1759.e8, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37071991

RESUMEN

In multiple sclerosis, an inflammatory attack results in myelin loss, which can be partially reversed by remyelination. Recent studies suggest that mature oligodendrocytes could contribute to remyelination by generating new myelin. Here, we show that in a mouse model of cortical multiple sclerosis pathology, surviving oligodendrocytes can indeed extend new proximal processes but rarely generate new myelin internodes. Furthermore, drugs that boost myelin recovery by targeting oligodendrocyte precursor cells did not enhance this alternate mode of myelin regeneration. These data indicate that the contribution of surviving oligodendrocytes to myelin recovery in the inflamed mammalian CNS is minor and inhibited by distinct remyelination brakes.


Asunto(s)
Esclerosis Múltiple , Remielinización , Ratones , Animales , Oligodendroglía/patología , Vaina de Mielina/patología , Axones/patología , Mamíferos
10.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112685

RESUMEN

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Asunto(s)
Encéfalo , Dieta Cetogénica , Animales , Encéfalo/metabolismo , Carbohidratos , Cuerpos Cetónicos/metabolismo , Ratones , Proteoma/metabolismo
11.
Neurotherapeutics ; 19(5): 1603-1616, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35821382

RESUMEN

Purinergic 2 receptors (P2Rs) contribute to disease-related immune cell signaling and are upregulated in various pathological settings, including neuroinflammation. P2R inhibitors have been used to treat inflammatory diseases and can protect against complement-mediated cell injury. However, the mechanisms behind these anti-inflammatory properties of P2R inhibitors are not well understood, and their potential in CNS autoimmunity is underexplored. Here, we tested the effects of P2R inhibitors on glial toxicity in a mouse model of neuromyelitis optica spectrum disorder (NMOSD). NMOSD is a destructive CNS autoimmune disorder, in which autoantibodies against astrocytic surface antigen Aquaporin 4 (AQP4) mediate complement-dependent loss of astrocytes. Using two-photon microscopy in vivo, we found that various classes of P2R inhibitors prevented AQP4-IgG/complement-dependent astrocyte death. In vitro, these drugs inhibited the binding of AQP4-IgG or MOG-IgG to their antigen in a dose-dependent manner. Size-exclusion chromatography and circular dichroism spectroscopy revealed a partial unfolding of antibodies in the presence of various P2R inhibitors, suggesting a shared interference with IgG antibodies leading to their conformational change. Our study demonstrates that P2R inhibitors can disrupt complement activation by direct interaction with IgG. This mechanism is likely to influence the role of P2R inhibitors in autoimmune disease models and their therapeutic impact in human disease.


Asunto(s)
Neuromielitis Óptica , Animales , Ratones , Humanos , Neuromielitis Óptica/tratamiento farmacológico , Acuaporina 4 , Autoanticuerpos/metabolismo , Inmunoglobulina G/farmacología , Activación de Complemento , Modelos Animales de Enfermedad , Astrocitos/metabolismo , Antígenos de Superficie/metabolismo , Antígenos de Superficie/farmacología
13.
Small ; 18(18): e2200302, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35384294

RESUMEN

The current lack of understanding about how nanocarriers cross the blood-brain barrier (BBB) in the healthy and injured brain is hindering the clinical translation of nanoscale brain-targeted drug-delivery systems. Here, the bio-distribution of lipid nano-emulsion droplets (LNDs) of two sizes (30 and 80 nm) in the mouse brain after traumatic brain injury (TBI) is investigated. The highly fluorescent LNDs are prepared by loading them with octadecyl rhodamine B and a bulky hydrophobic counter-ion, tetraphenylborate. Using in vivo two-photon and confocal imaging, the circulation kinetics and bio-distribution of LNDs in the healthy and injured mouse brain are studied. It is found that after TBI, LNDs of both sizes accumulate at vascular occlusions, where specifically 30 nm LNDs extravasate into the brain parenchyma and reach neurons. The vascular occlusions are not associated with bleedings, but instead are surrounded by processes of activated microglia, suggesting a specific opening of the BBB. Finally, correlative light-electron microscopy reveals 30 nm LNDs in endothelial vesicles, while 80 nm particles remain in the vessel lumen, indicating size-selective vesicular transport across the BBB via vascular occlusions. The data suggest that microvascular occlusions serve as "gates" for the transport of nanocarriers across the BBB.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Nanopartículas , Animales , Barrera Hematoencefálica , Encéfalo , Portadores de Fármacos/química , Liposomas , Ratones , Nanopartículas/química
14.
Brain ; 145(5): 1726-1742, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202467

RESUMEN

Neuromyelitis optica is a chronic neuroinflammatory disease, which primarily targets astrocytes and often results in severe axon injury of unknown mechanism. Neuromyelitis optica patients harbour autoantibodies against the astrocytic water channel protein, aquaporin-4 (AQP4-IgG), which induce complement-mediated astrocyte lysis and subsequent axon damage. Using spinal in vivo imaging in a mouse model of such astrocytopathic lesions, we explored the mechanism underlying neuromyelitis optica-related axon injury. Many axons showed a swift and morphologically distinct 'pearls-on-string' transformation also readily detectable in human neuromyelitis optica lesions, which especially affected small calibre axons independently of myelination. Functional imaging revealed that calcium homeostasis was initially preserved in this 'acute axonal beading' state, ruling out disruption of the axonal membrane, which sets this form of axon injury apart from previously described forms of traumatic and inflammatory axon damage. Morphological, pharmacological and genetic analyses showed that AQP4-IgG-induced axon injury involved osmotic stress and ionic overload, but does not appear to use canonical pathways of Wallerian-like degeneration. Subcellular analysis demonstrated remodelling of the axonal cytoskeleton in beaded axons, especially local loss of microtubules. Treatment with the microtubule stabilizer epothilone, a putative therapy approach for traumatic and degenerative axonopathies, prevented axonal beading, while destabilizing microtubules sensitized axons for beading. Our results reveal a distinct form of immune-mediated axon pathology in neuromyelitis optica that mechanistically differs from known cascades of post-traumatic and inflammatory axon loss, and suggest a new strategy for neuroprotection in neuromyelitis optica and related diseases.


Asunto(s)
Neuromielitis Óptica , Animales , Acuaporina 4 , Astrocitos/metabolismo , Autoanticuerpos/metabolismo , Axones/patología , Humanos , Inmunoglobulina G/metabolismo , Ratones , Neuromielitis Óptica/metabolismo
15.
Neuron ; 110(4): 559-561, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35176237

RESUMEN

Transfer between cells is an unexpected addition to the mitochondrial life cycle. In this issue of Neuron, Van der Vlist et al. now provide evidence that M2-macrophages infiltrating sensory ganglia resolve pain by transferring particles containing mitochondria to neurons-thus boosting nociceptors back to normal function.


Asunto(s)
Ganglios Espinales , Nociceptores , Ganglios Espinales/citología , Humanos , Mitocondrias , Neuronas , Nociceptores/metabolismo , Dolor/fisiopatología
16.
STAR Protoc ; 3(1): 101081, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35059654

RESUMEN

This step-by-step protocol provides a fast and easy technique to label and/or genetically manipulate neural cells, achieved by intraventricular injection of viral vectors into neonatal mice under ultrasound guidance. Successful injection of adeno-associated viral vectors (AAV) induces neural transduction as fast as 3 days post injection (dpi) in both the central and peripheral nervous systems. Virally driven expression persists until early adulthood. The same setup enables injection of other viral vectors as well as intramuscular injection. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021) and Brill et al. (2016).


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Inyecciones , Inyecciones Intraventriculares , Ratones , Neuronas/metabolismo
17.
Front Neuroanat ; 15: 732506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720890

RESUMEN

Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.

18.
Front Cell Dev Biol ; 9: 747699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820375

RESUMEN

Transthyretin (TTR), a plasma and cerebrospinal fluid protein, increases axon growth and organelle transport in sensory neurons. While neurons extend their axons, the microtubule (MT) cytoskeleton is crucial for the segregation of functional compartments and axonal outgrowth. Herein, we investigated whether TTR promotes axon elongation by modulating MT dynamics. We found that TTR KO mice have an intrinsic increase in dynamic MTs and reduced levels of acetylated α-tubulin in peripheral axons. In addition, they failed to modulate MT dynamics in response to sciatic nerve injury, leading to decreased regenerative capacity. Importantly, restoring acetylated α-tubulin levels of TTR KO dorsal root ganglia (DRG) neurons using an HDAC6 inhibitor is sufficient to completely revert defective MT dynamics and neurite outgrowth. In summary, our results reveal a new role for TTR in the modulation of MT dynamics by regulating α-tubulin acetylation via modulation of the acetylase ATAT1, and suggest that this activity underlies TTR neuritogenic function.

19.
Curr Biol ; 31(21): 4870-4878.e5, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34534440

RESUMEN

Neuronal identity has long been thought of as immutable, so that once a cell acquires a specific fate, it is maintained for life.1 Studies using the overexpression of potent transcription factors to experimentally reprogram neuronal fate in the mouse neocortex2,3 and retina4,5 have challenged this notion by revealing that post-mitotic neurons can switch their identity. Whether fate reprogramming is part of normal development in the central nervous system (CNS) is unclear. While there are some reports of physiological cell fate reprogramming in invertebrates,6,7 and in the vertebrate peripheral nervous system,8 endogenous fate reprogramming in the vertebrate CNS has not been documented. Here, we demonstrate spontaneous fate re-specification in an interneuron lineage in the zebrafish retina. We show that the visual system homeobox 1 (vsx1)-expressing lineage, which has been associated exclusively with excitatory bipolar cell (BC) interneurons,9-12 also generates inhibitory amacrine cells (ACs). We identify a role for Notch signaling in conferring plasticity to nascent vsx1 BCs, allowing suitable transcription factor programs to re-specify them to an AC fate. Overstimulating Notch signaling enhances this physiological phenotype so that both daughters of a vsx1 progenitor differentiate into ACs and partially differentiated vsx1 BCs can be converted into ACs. Furthermore, this physiological re-specification can be mimicked to allow experimental induction of an entirely distinct fate, that of retinal projection neurons, from the vsx1 lineage. Our observations reveal unanticipated plasticity of cell fate during retinal development.


Asunto(s)
Proteínas de Homeodominio , Pez Cebra , Animales , Diferenciación Celular/genética , Linaje de la Célula , Sistema Nervioso Central , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Ratones , Neuronas/fisiología , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
Nat Immunol ; 22(7): 880-892, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099917

RESUMEN

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Asunto(s)
Autoinmunidad , Encéfalo/inmunología , Linaje de la Célula , Encefalomielitis Autoinmune Experimental/inmunología , Intestinos/inmunología , Piel/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Traslado Adoptivo , Animales , Autoinmunidad/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Señalización del Calcio , Líquido Cefalorraquídeo/inmunología , Líquido Cefalorraquídeo/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Clorhidrato de Fingolimod/farmacología , Perfilación de la Expresión Génica , Genes Codificadores de los Receptores de Linfocitos T , Células HEK293 , Humanos , Inmunosupresores/farmacología , Intestinos/efectos de los fármacos , Microscopía Intravital , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Fenotipo , Estudios Prospectivos , RNA-Seq , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Análisis de la Célula Individual , Piel/efectos de los fármacos , Piel/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Colaboradores-Inductores/trasplante , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...