Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(2): eadl0604, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198553

RESUMEN

Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.

2.
Nanotechnology ; 34(44)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37478831

RESUMEN

In this study, a simple yet versatile method is proposed for identifying the number of exfoliated graphene layers transferred on an oxide substrate from optical images, utilizing a limited number of input images for training, paired with a more traditional number of a few thousand well-published Github images for testing and predicting. Two thresholding approaches, namely the standard deviation-based approach and the linear regression-based approach, were employed in this study. The method specifically leverages the red, green, and blue color channels of image pixels and creates a correlation between the green channel of the background and the green channel of the various layers of graphene. This method proves to be a feasible alternative to deep learning-based graphene recognition and traditional microscopic analysis. The proposed methodology performs well under conditions where the effect of surrounding light on the graphene-on-oxide sample is minimum and allows rapid identification of the various graphene layers. The study additionally addresses the functionality of the proposed methodology with nonhomogeneous lighting conditions, showcasing successful prediction of graphene layers from images that are lower in quality compared to typically published in literature. In all, the proposed methodology opens up the possibility for the non-destructive identification of graphene layers from optical images by utilizing a new and versatile method that is quick, inexpensive, and works well with fewer images that are not necessarily of high quality.

3.
Micromachines (Basel) ; 14(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37421064

RESUMEN

Solar sailing enables efficient propellant-free attitude adjustment and orbital maneuvers of solar sail spacecraft with high area-to-mass ratios. However, the heavy supporting mass for large solar sails inevitably leads to low area-to-mass ratios. Inspired by chip-scale satellites, a chip-scale solar sail system named ChipSail, consisting of microrobotic solar sails and a chip-scale satellite, was proposed in this work. The structural design and reconfigurable mechanisms of an electrothermally driven microrobotic solar sail made of Al\Ni50Ti50 bilayer beams were introduced, and the theoretical model of its electro-thermo-mechanical behaviors was established. The analytical solutions to the out-of-plane deformation of the solar sail structure appeared to be in good agreement with the finite element analysis (FEA) results. A representative prototype of such solar sail structures was fabricated on silicon wafers using surface and bulk microfabrication, followed by an in-situ experiment of its reconfigurable property under controlled electrothermal actuation. The experimental results demonstrated significant electro-thermo-mechanical deformation of such microrobotic bilayer solar sails, showing great potential in the development of the ChipSail system. Analytical solutions to the electro-thermo-mechanical model, as well as the fabrication process and characterization techniques, provided a rapid performance evaluation and optimization of such microrobotic bilayer solar sails for the ChipSail.

4.
ACS Appl Mater Interfaces ; 15(29): 35543-35551, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37440697

RESUMEN

Thin-film composite membranes are a leading technology for post-combustion carbon capture, and the key challenge is to fabricate defect-free selective nanofilms as thin as possible (100 nm or below) with superior CO2/N2 separation performance. Herein, we developed high-performance membranes based on an unusual choice of semi-crystalline blends of amorphous poly(ethylene oxide) (aPEO) and 18-crown-6 (C6) using two nanoengineering strategies. First, the crystallinity of the nanofilms decreases with decreasing thickness and completely disappears at 500 nm or below because of the thickness confinement. Second, polydimethylsiloxane is chosen as the gutter layer between the porous support and selective layer, and its surface is modified with bio-adhesive polydopamine (<10 nm) with an affinity toward aPEO, enabling the formation of the thin, defect-free, amorphous aPEO/C6 layer. For example, a 110 nm film containing 40 mass % C6 in aPEO exhibits CO2 permeability of 900 Barrer (much higher than a thick film with 420 Barrer), rendering a membrane with a CO2 permeance of 2200 GPU and CO2/N2 selectivity of 27 at 35 °C, surpassing Robeson's upper bound. This work shows that engineering at the nanoscale plays an important role in designing high-performance membranes for practical separations.

5.
ACS Nano ; 17(13): 12603-12615, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350454

RESUMEN

Despite much technical progress achieved so far, the exact surface and shape evolution during wet chemical etching is less unraveled, especially in ionically bonded ceramics. Herein, by using in situ liquid cell transmission electron microscopy, a repeated two-stage anisotropic and pulsating periodic etching dynamic is discovered during the pencil shape evolution of a single crystal ZnO nanorod in aqueous hydrochloric acid. Specifically, the nanopencil tip shrinks at a slower rate along [0001̅] than that along the ⟨101̅0⟩ directions, resulting in a sharper ZnO pencil tip. Afterward, rapid tip dissolution happens due to accelerated etching rates along various crystal directions. Concurrently, the vicinal base region of the original nanopencil tip emerges as a new tip followed by the repeated sequence of tip shrinking and removal. The high-index surfaces, such as {101̅m} (m = 0, 1, 2, or 3) and {21̅ 1̅n} (n = 0, 1, 2, or 3), are found to preferentially expose in different ratios. Our 3D electron tomography, convergent beam electron diffraction, middle-angle bright-field STEM, and XPS results indicate the dissociative Cl- species were bound to the Zn-terminated tip surfaces. Furthermore, DFT calculation suggests the preferential Cl- passivation over the {101̅1} and (0001) surfaces of lower energy than others, leading to preferential surface exposures and the oscillatory variation of different facet etching rates. The boosted reactivity due to high-index nanoscale surface exposures is confirmed by comparatively enhanced chemical sensing and CO2 hydrogenation activity. These findings provide an in-depth understanding of anisotropic wet chemical etching of ionic nanocrystals and offer a design strategy for advanced functional materials.

6.
Adv Mater ; 35(26): e2301007, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002918

RESUMEN

Nanoparticles (NPs) at high loadings are often used in mixed matrix membranes (MMMs) to improve gas separation properties, but they can lead to defects and poor processability that impede membrane fabrication. Herein, it is demonstrated that branched nanorods (NRs) with controlled aspect ratios can significantly reduce the required loading to achieve superior gas separation properties while maintaining excellent processability, as demonstrated by the dispersion of palladium (Pd) NRs in polybenzimidazole for H2 /CO2 separation. Increasing the aspect ratio from 1 for NPs to 40 for NRs decreases the percolation threshold volume fraction by a factor of 30, from 0.35 to 0.011. An MMM with percolated networks formed by Pd NRs at a volume fraction of 0.039 exhibits H2 permeability of 110 Barrer and H2 /CO2 selectivity of 31 when challenged with simulated syngas at 200 °C, surpassing Robeson's upper bound. This work highlights the advantage of NRs over NPs and nanowires and shows that right-sizing nanofillers in MMMs is critical to construct highly sieving pathways at minimal loadings. This work paves the way for this general feature to be applied across materials systems for a variety of chemical separations.

7.
Soft Matter ; 19(14): 2594-2604, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947412

RESUMEN

Blends of block copolymers can form phases and exhibit features distinct from the constituent materials. We study thin film blends of cylinder-forming and lamellar-forming block copolymers across a range of substrate surface energies. Blend materials are responsive to interfacial energy, allowing selection of pure or coexisting phases based on surface chemistry. Blending stabilizes certain motifs that are typically metastable, and can be used to generate pure hexagonally perforated lamellar thin films across a range of film thicknesses and surface energies. This tolerant behavior is ascribed to the ability of blend materials to redistribute chains to stabilize otherwise high-energy defect structures. The blend responsiveness allows the morphology to be spatially defined through multi-tone chemical surface patterns.

8.
Small ; 19(15): e2207092, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36631283

RESUMEN

Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X-ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general.

9.
Nanotechnology ; 34(17)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36652701

RESUMEN

Perovskite solar cells (PSCs) have become one of the state-of-the-art photovoltaic technologies due to their facile solution-based fabrication processes combined with extremely high photovoltaic performance originating from excellent optoelectronic properties such as strong light absorption, high charge mobility, long free charge carrier diffusion length, and tunable direct bandgap. However, the poor intrinsic stability of hybrid perovskites under environmental stresses including light, heat, and moisture, which is often associated with high defect density in the perovskite, has limited the large-scale commercialization and deployment of PSCs. The use of process additives, which can be included in various subcomponent layers in the PSC, has been identified as one of the effective approaches that can address these issues and improve the photovoltaic performance. Among various additives that have been explored, two-dimensional (2D) materials have emerged recently due to their unique structures and properties that can enhance the photovoltaic performance and device stability by improving perovskite crystallization, defect passivation, and charge transport. Here, we provide a review of the recent progresses in 2D material additives for improving the PSC performance based on key representative 2D material systems, including graphene and its derivatives, transitional metal dichalcogenides, and black phosphorous, providing a useful guideline for further exploiting unique nanomaterial additives for more efficient and stable PSCs in the near future.

10.
Nat Commun ; 13(1): 6947, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376380

RESUMEN

Block copolymers spontaneously self-assemble into well-defined nanoscale morphologies. Yet equilibrium assembly gives rise to a limited set of structures. Non-equilibrium strategies can, in principle, expand diversity by exploiting self-assembly's responsive nature. In this vein, we developed a pathway priming strategy combining control of thin film initial configurations and ordering history. We sequentially coat distinct materials to form prescribed initial states, and use thermal annealing to evolve these manifestly non-equilibrium states through the assembly landscape, traversing normally inaccessible transient structures. We explore the enormous associated hyperspace, spanning processing (annealing temperature and time), material (composition and molecular weight), and layering (thickness and order) dimensions. We demonstrate a library of exotic non-native morphologies, including vertically-oriented perforated lamellae, aqueduct structures (vertical lamellar walls with substrate-pinned perforations), parapets (crenellated lamellae), and networks of crisscrossing lamellae. This enhanced structural control can be used to modify functional properties, including accessing regimes that surpass their equilibrium analogs.


Asunto(s)
Polímeros , Polímeros/química
11.
ACS Appl Mater Interfaces ; 14(22): 25326-25336, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611991

RESUMEN

In 2017, we reported a dye-sensitized, photoelectrolysis cell consisting of fluorine-doped tin oxide (FTO)-coated glass covered by SnO2 nanoparticles coated with N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide (PMPDI) dye and then a photoelectrochemically deposited CoOx water oxidation catalyst (WOCatalyst), FTO/nano-SnO2/PMPDI/CoOx. This system employed nanostructured SnO2 stabilized by a polyethyleneglycol bisphenol A epichlorohydrin (PEG-BAE) copolymer and other C-containing additives based on a literature synthesis to achieve a higher surface area and thus greater PMPDI dye absorption and resultant light collection. Surprisingly, the addition of the well-established WOCatalyst CoOx resulted in a decrease in the photocurrent, an unexpected "anti-catalyst" effect. Two primary questions addressed in the present study are (1) what is the source of this "anti-catalyst" effect? and (2) are the findings of broader interest? Reflection on the synthesis of nano-SnO2 stabilized by PEG-BAE, and the large, ca. 10:1 ratio of C to Sn in synthesis, led to the hypothesis that even the annealing step at 450 °C in of the FTO/SnO2 anode precursors was unlikely to remove all the carbon initially present. Indeed, residual carbon impurities are shown to be the culprit in the presently observed "anti-catalyst" effect. The implication and anticipated broader impact of the results of answering the two abovementioned questions are also presented and discussed along with a section entitled "Perspective and Suggestions for the Field Going Forward."

12.
Small ; 18(23): e2201982, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35567438

RESUMEN

Mixed matrix materials (MMMs) hold great potential for membrane gas separations by merging nanofillers with unique nanostructures and polymers with excellent processability. In situ growth of the nanofillers is adapted to mitigate interfacial incompatibility to avoid the selectivity loss. Surprisingly, functional polymers have not been exploited to co-grow the nanofillers for membrane applications. Herein, in situ synergistic growth of crystalline zeolite imidazole framework-8 (ZIF-8) in polybenzimidazole (PBI), creating highly porous structures with high gas permeability, is demonstrated. More importantly, PBI contains benzimidazole groups (similar to the precursor for ZIF-8, i.e., 2-methylimidazole) and induces the formation of amorphous ZIFs, enhancing interfacial compatibility and creating highly size-discriminating bottlenecks. For instance, the formation of 15 mass% ZIF-8 in PBI improves H2 permeability and H2 /CO2 selectivity by ≈100% at 35 °C, breaking the permeability/selectivity tradeoff. This work unveils a new platform of MMMs comprising functional polymer-incorporated amorphous ZIFs with hierarchical nanostructures for various applications.

13.
ACS Appl Nano Mater ; 5(4): 5045-5055, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35465271

RESUMEN

Rapid, yet accurate and sensitive testing has been shown to be critical in the control of spreading pandemic diseases such as COVID-19. Current methods which are highly sensitive and can differentiate different strains are slow and cannot be conveniently applied at the point of care. Rapid tests, meanwhile, require a high titer and are not sufficiently sensitive to discriminate between strains. Here, we report a rapid and facile potentiometric detection method based on nanoscale, three-dimensional molecular imprints of analytes on a self-assembled monolayer (SAM), which can deliver analyte-specific detection of both whole virions and isolated proteins in microliter amounts of bodily fluids within minutes. The detection substrate with nanoscale inverse surface patterns of analytes formed by a SAM identifies a target analyte by recognizing its surface nano- and molecular structures, which can be monitored by temporal measurement of the change in substrate open-circuit potential. The sensor unambiguously detected and differentiated H1N1 and H3N2 influenza A virions as well as the spike proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle-East respiratory syndrome (MERS) coronavirus in human saliva with limits of detection reaching 200 PFU/mL and 100 pg/mL for the viral particles and spike proteins, respectively. The demonstrated speed and specificity of detection, combined with a low required sample volume, high sensitivity, ease of potentiometric measurement, and simple sample collection and preparation, suggest that the technique can be used as a highly effective point-of-care diagnostic platform for a fast, accurate, and specific detection of various viral pathogens and their variants.

14.
Nanoscale ; 14(5): 1807-1813, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35037005

RESUMEN

The combination of block copolymer (BCP) thin film self-assembly and selective infiltration synthesis of inorganic materials into one BCP block provides access to various organic-inorganic hybrids. Here, we apply sequential infiltration synthesis, a vapor-phase hybridization technique, to selectively introduce ZnO into the organic microdomains of silicon-containing rod-coil diblock copolymers and a triblock terpolymer, polydimethylsiloxane (PDMS)-b-poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene} (PDMS-b-PMPCS) and PDMS-b-polystyrene-b-PMPCS (PDMS-b-PS-b-PMPCS), in which the PMPCS rod block is a liquid crystalline polymer. The in-plane cylindrical PDMS-b-PMPCS and core-shell cylindrical and hexagonally perforated lamellar PDMS-b-PS-b-PMPCS films were infiltrated with ZnO with high selectivity to the PMPCS. The etching contrast between PDMS, PS and the ZnO-infused PMPCS enables the fabrication of ZnO/SiOx binary composites by plasma etching and reveals the core-shell morphology of the triblock terpolymer.

15.
Phys Rev Lett ; 127(8): 086805, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477425

RESUMEN

We present experimental evidence of electronic and optical interlayer resonances in graphene van der Waals heterostructure interfaces. Using the spectroscopic mode of a low-energy electron microscope (LEEM), we characterized these interlayer resonant states up to 10 eV above the vacuum level. Compared with nontwisted, AB-stacked bilayer graphene (AB BLG), an ≈0.2 Å increase was found in the interlayer spacing of 30° twisted bilayer graphene (30°-tBLG). In addition, we used Raman spectroscopy to probe the inelastic light-matter interactions. A unique type of Fano resonance was found around the D and G modes of the graphene lattice vibrations. This anomalous, robust Fano resonance is a direct result of quantum confinement and the interplay between discrete phonon states and the excitonic continuum.

16.
Nanoscale Adv ; 3(4): 991-996, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36133301

RESUMEN

Energy transfer (ET) from nanocrystals (NCs) has shown potential to enhance the optoelectronic performance of ultrathin semiconductor devices such as ultrathin Si solar cells, but the experimental identification of optimal device geometries for maximizing the performance enhancement is highly challenging due to a large parameter space. Here, we have demonstrated a general theoretical framework combining transfer matrix method (TMM) simulations and energy transfer (ET) calculations to reveal critical device design guidelines for developing an efficient, NC-based ET sensitization of ultrathin Si solar cells, which are otherwise infeasible to identify experimentally. The results uncover that the ET-driven NC sensitization is highly effective in enhancing the short circuit current (J SC) in sub-100 nm-thick Si layers, where, for example, the ET contribution can account for over 60% of the maximum achievable J SC in 10 nm-thick ultrathin Si. The study also reveals the limitation of the ET approach, which becomes ineffective for Si active layers thicker than 5 µm, being dominated by conventional optical coupling. The demonstrated simulation approach not only enables the development of efficient ultrathin Si solar cells but also should be applicable to precisely assessing and analyzing diverse experimental device geometries and configurations for developing new efficient ET-based ultrathin semiconductor optoelectronic devices.

17.
ACS Appl Bio Mater ; 4(10): 7422-7430, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35006688

RESUMEN

A combination of fused deposition modeling printing with atomic layer deposition (ALD) of titania was designed to achieve templated biomineralization and terminal odontogenic differentiation of dental pulp stem cells on three-dimensional (3D) printed polylactic acid (PLA) scaffolds. In the absence of the ALD-deposited titania coating, we had previously shown that both plating efficiency and differentiation are adversely impacted when scaffolds are produced by 3D printing rather than traditional polymer molding. These differences were removed when both printed and molded structures were coated with ALD of titania, which improved the outcomes regardless of the manufacturing method. In this case, on all titania-coated substrates, the plating efficiency increased, copious mineral deposition was observed, and RT-PCR indicated a significant upregulation of osteocalcin, a gene associated with mineral deposition. The influence of additional coatings of collagen, gelatin, or fibronectin on the ALD titania-coated and uncoated PLA-printed and molded scaffolds was also investigated. Upregulation of the odontogenic late-stage differentiation sibling protein, dentin sialoprotein, was observed on the collagen ALD-titania-coated scaffolds and to a lesser extent on the gelatin ALD-titania-coated scaffolds.


Asunto(s)
Gelatina , Andamios del Tejido , Técnicas de Cultivo de Célula , Colágeno/química , Pulpa Dental , Dentina , Poliésteres/química , Impresión Tridimensional , Andamios del Tejido/química
18.
Adv Mater Interfaces ; 7(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33708471

RESUMEN

A novel atomic layer method for encapsulating individual micro- and nano-particles with thin (sub-10-nm) dielectric films is presented. This method leverages the diffusion of vapor-phase precursors through an underlying inert polymer film to achieve growth of a metal oxide film on all sides of the particle simultaneously; even on the side that is in contact with the substrate. Crucially, the deposition is performed on stationary particles and does not require an agitation mechanism or a special reaction chamber. Here, conformal coatings of alumina are shown to improve stability in aqueous environments for two optically-relevant particles: compound semiconductor laser microparticles and lead halide perovskite nanocrystals.

19.
ACS Appl Mater Interfaces ; 12(1): 1444-1453, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31786911

RESUMEN

Organic-inorganic hybrids featuring tunable material properties can be readily generated by applying vapor- or liquid-phase infiltration (VPI or LPI) of inorganic materials into organic templates, with resulting properties controlled by type and quantity of infiltrated inorganics. While LPI offers more diverse choices of infiltratable elements, it tends to yield smaller infiltration amount than VPI, but the attempt to address the issue has been rarely reported. Here, we demonstrate a facile temperature-enhanced LPI method to control and drastically increase the quantity and kinetics of Pt infiltration into self-assembled polystyrene-block-poly(2-vinylpyridine) block copolymer (BCP) thin films. By applying LPI at mildly elevated temperatures (40-80 °C), we showcase controllable optical functionality of hybrid BCP films along with conductive three-dimensional (3D) inorganic nanostructures. Structural analysis reveals enhanced metal loading into the BCP matrix at higher LPI temperatures, suggesting multiple metal ion infiltration per monomer of P2VP. Combining temperature-enhanced LPI with hierarchical multilayer BCP self-assembly, we generate BCP-metal hybrid optical coatings featuring tunable antireflective properties as well as scalable conductive 3D Pt nanomesh structures. Enhanced material infiltration and control by temperature-enhanced LPI not only enables tunability of organic-inorganic hybrid nanostructures and properties but also expands the application of BCPs for generating uniquely functional inorganic nanostructures.

20.
Nanoscale ; 11(19): 9533-9546, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31049522

RESUMEN

Three-dimensional (3D) nanoarchitectures can offer enhanced material properties, such as large surface areas that amplify the structures' interaction with environments making them useful for various sensing applications. Self-assembled block copolymers (BCPs) can readily generate various 3D nanomorphologies, but their conversion to useful inorganic materials remains one of the critical challenges against the practical application of self-assembled BCPs. This work reports the vapor-phase infiltration synthesis of optoelectrically active, 3D ZnO nanomesh architectures by combining hierarchical successive stacking of self-assembled, lamellar-phase polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) BCP thin films and a modified block-selective vapor-phase material infiltration protocol. The 3D ZnO nanomesh exhibits optoelectrical functionality, featuring stack-layer-number-dependent electrical conductance resembling the percolative transport originating from the intrinsic morphological network connectivity of the lamellar BCP pattern with symmetric block ratio. The results not only illustrate the first demonstration of electrical functionality based on the ZnO nanoarchitecture directly generated by the infiltration synthesis in self-assembled BCP thin films but also present a new, large-area scalable, metal oxide thin film nanoarchitecture fabrication method utilizing industry-compatible polymer solution coating and atomic layer deposition. Given the large surface area, three-dimensional porosity, and readily scalable fabrication procedures, the generated ZnO nanomesh promises potential applications as an efficient active medium in chemical and optical sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...