Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Dev Biol ; 151: 155-190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681469

RESUMEN

Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.


Asunto(s)
Centrómero , Roturas del ADN de Doble Cadena , Humanos , Centrómero/genética , Meiosis/genética
2.
Nucleic Acids Res ; 50(2): 899-914, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34967417

RESUMEN

During meiosis, DNA double-strand breaks (DSBs) are formed at high frequency at special chromosomal sites, called DSB hotspots, to generate crossovers that aid proper chromosome segregation. Multiple chromosomal features affect hotspot formation. In the fission yeast S. pombe the linear element proteins Rec25, Rec27 and Mug20 are hotspot determinants - they bind hotspots with high specificity and are necessary for nearly all DSBs at hotspots. To assess whether they are also sufficient for hotspot determination, we localized each linear element protein to a novel chromosomal site (ade6 with lacO substitutions) by fusion to the Escherichia coli LacI repressor. The Mug20-LacI plus lacO combination, but not the two separate lac elements, produced a strong ade6 DSB hotspot, comparable to strong endogenous DSB hotspots. This hotspot had unexpectedly low ade6 recombinant frequency and negligible DSB hotspot competition, although like endogenous hotspots it manifested DSB interference. We infer that linear element proteins must be properly placed by endogenous functions to impose hotspot competition and proper partner choice for DSB repair. Our results support and expand our previously proposed DSB hotspot-clustering model for local control of meiotic recombination.


Asunto(s)
Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Escherichia coli/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
3.
FEBS J ; 289(1): 117-120, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405539

RESUMEN

Accumulation of mutations such as deletions in mitochondrial DNA is associated with ageing, cancer and human genetic disorders. These deletions are often flanked by GC-skewed sequence motifs that can potentially fold into secondary non-B DNA conformations. G-quadruplexes are emerging as key initiators of mitochondrial genomic instability. In this issue, Dahal et al provide an in silico analysis of sequence motifs that can fold into altered DNA structures in mitochondrial genomic regions that contain frequent deletions. They show the formation of five G-quadruplexes near such frequent breakpoints using biochemical and biophysical approaches in vitro and more importantly inside mammalian cells. Comment on: https://doi.org/10.1111/febs.16113.


Asunto(s)
G-Cuádruplex , Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Inestabilidad Genómica , Humanos , Conformación de Ácido Nucleico
4.
Cell Rep ; 36(2): 109390, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260911

RESUMEN

Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.


Asunto(s)
Linfocitos B/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , MicroARNs/metabolismo , Recombinación V(D)J/genética , Regiones no Traducidas 3'/genética , Animales , Linfocitos B/citología , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Proteínas de Homeodominio/metabolismo , Humanos , Luciferasas/metabolismo , Linfocitos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , Procesamiento Postranscripcional del ARN/genética
5.
Trends Genet ; 36(5): 337-346, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32294414

RESUMEN

During scientific investigations, the explanation of remarkably interesting phenomena must often await development of new methods or accrual of new observations that in retrospect can lead to lucid answers to the initial problem. A case in point is the control of genetic recombination during meiosis, which leads to crossovers between chromosomes critical for production of healthy offspring. Crossovers must be properly placed along meiotic chromosomes for their accurate segregation. Here, we review observations on two aspects of meiotic crossover control - crossover interference and repression of crossovers near centromeres, both observed more than 85 years ago. Only recently have relatively simple molecular mechanisms for these phenomena become clear through advances in both methods and understanding the molecular basis of meiotic recombination.


Asunto(s)
Centrómero/genética , Segregación Cromosómica/genética , Intercambio Genético/genética , Meiosis/genética , Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética
6.
DNA Repair (Amst) ; 81: 102648, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31345733

RESUMEN

During meiosis, homologous chromosomes of a diploid cell are replicated and, without a second replication, are segregated during two nuclear divisions to produce four haploid cells (including discarded polar bodies in females of many species). Proper segregation of chromosomes at the first division requires in most species that homologous chromosomes be physically connected. Tension generated by connected chromosomes moving to opposite sides of the cell signals proper segregation. In the absence of the required connections, called crossovers, chromosomes often segregate randomly and produce aneuploid gametes and, thus, dead or disabled progeny. To be effective, crossovers must be properly distributed along chromosomes. Crossovers within or too near the centromere interfere with proper segregation; crossovers too near each other can ablate the required tension; and crossovers too concentrated in only one or a few regions would not re-assort most genetic characters important for evolution. Here, we discuss current knowledge of how the optimal distribution of crossovers is achieved in the fission yeast Schizosaccharomyces pombe, with reference to other well-studied species for comparison and illustration of the diversity of biology.


Asunto(s)
Segregación Cromosómica , Intercambio Genético , Meiosis , Schizosaccharomyces/genética , Animales , Eucariontes/genética , Evolución Molecular , Fertilidad , Humanos
7.
FEBS J ; 285(21): 3959-3976, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230716

RESUMEN

Nonhomologous DNA end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals. Previously, we have described a small molecule inhibitor, SCR7, which can inhibit NHEJ in a Ligase IV-dependent manner. Administration of SCR7 within the cells resulted in the accumulation of DNA breaks, cell death, and inhibition of tumor growth in mice. In the present study, we report that parental SCR7, which is unstable, can be autocyclized into a stable form. Both parental SCR7 and cyclized SCR7 possess the same molecular weight (334.09) and molecular formula (C18 H14 N4 OS), whereas its oxidized form, SCR7-pyrazine, possesses a different molecular formula (C18 H12 N4 OS), molecular weight (332.07), and structure. While cyclized form of SCR7 showed robust inhibition of NHEJ in vitro, both forms exhibited efficient cytotoxicity. Cyclized and oxidized forms of SCR7 inhibited DNA end joining catalyzed by Ligase IV, whereas their impact was minimal on Ligase III, Ligase I, and T4 DNA Ligase-mediated joining. Importantly, both forms inhibited V(D)J recombination, although the effect was more pronounced for SCR7-cyclized. Both forms blocked NHEJ in a Ligase IV-dependent manner leading to the accumulation of DSBs within the cells. Although cytotoxicity due to SCR7-cyclized was Ligase IV specific, the pyrazine form exhibited nonspecific cytotoxicity at higher concentrations in Ligase IV-null cells. Finally, we demonstrate that both forms can potentiate the effect of radiation. Thus, we report that cyclized and oxidized forms of SCR7 can inhibit NHEJ in a Ligase IV-dependent manner, although SCR7-pyrazine is less specific to Ligase IV inside the cell.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/metabolismo , Neoplasias/patología , Pirimidinas/farmacología , Bases de Schiff/farmacología , Muerte Celular/efectos de los fármacos , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oxidación-Reducción , Recombinación V(D)J
8.
Mol Cell ; 71(4): 540-553.e4, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30078721

RESUMEN

In most eukaryotes, meiotic crossovers are essential for error-free chromosome segregation but are specifically repressed near centromeres to prevent missegregation. Recognized for >85 years, the molecular mechanism of this repression has remained unknown. Meiotic chromosomes contain two distinct cohesin complexes: pericentric complex (for segregation) and chromosomal arm complex (for crossing over). We show that the pericentric-specific complex also actively represses pericentric meiotic double-strand break (DSB) formation and, consequently, crossovers. We uncover the mechanism by which fission yeast heterochromatin protein Swi6 (mammalian HP1-homolog) prevents recruitment of activators of meiotic DSB formation. Localizing missing activators to wild-type pericentromeres bypasses repression and generates abundant crossovers but reduces gamete viability. The molecular mechanism elucidated here likely extends to other species, including humans, where pericentric crossovers can result in disorders, such as Down syndrome. These mechanistic insights provide new clues to understand the roles played by multiple cohesin complexes, especially in human infertility and birth defects.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/genética , Meiosis , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Centrómero/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Intercambio Genético , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Cohesinas
9.
Semin Cell Dev Biol ; 54: 188-97, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26849908

RESUMEN

During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.


Asunto(s)
Centrómero/metabolismo , Meiosis/genética , Recombinación Genética , Animales , Segregación Cromosómica/genética , Roturas del ADN de Doble Cadena , Conversión Génica , Humanos
10.
Nucleic Acids Res ; 43(15): 7349-59, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26130711

RESUMEN

Meiotic programmed DNA double-strand break (DSB) repair is essential for crossing-over and viable gamete formation and requires removal of Spo11-oligonucleotide complexes from 5' ends (clipping) and their resection to generate invasive 3'-end single-stranded DNA (resection). Ctp1 (Com1, Sae2, CtIP homolog) acting with the Mre11-Rad50-Nbs1 (MRN) complex is required in both steps. We isolated multiple S. pombe ctp1 mutants deficient in clipping but proficient in resection during meiosis. Remarkably, all of the mutations clustered in or near the conserved CxxC or RHR motif in the C-terminal portion. The mutants tested, like ctp1Δ, were clipping-deficient by both genetic and physical assays-. But, unlike ctp1Δ, these mutants were recombination-proficient for Rec12 (Spo11 homolog)-independent break-repair and resection-proficient by physical assay. We conclude that the intracellular Ctp1 C-terminal portion is essential for clipping, while the N-terminal portion is sufficient for DSB end-resection. This conclusion agrees with purified human CtIP resection and endonuclease activities being independent. Our mutants provide intracellular evidence for separable functions of Ctp1. Some mutations truncate Ctp1 in the same region as one of the CtIP mutations linked to the Seckel and Jawad severe developmental syndromes, suggesting that these syndromes are caused by a lack of clipping at DSB ends that require repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Meiosis/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Camptotecina/toxicidad , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Metilmetanosulfonato/toxicidad , Mutación , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas/genética
11.
PLoS One ; 10(3): e0119722, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25799152

RESUMEN

DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.


Asunto(s)
Cartilla de ADN/química , ADN/análisis , ADN/genética , G-Cuádruplex , Motivos de Nucleótidos/genética , Dicroismo Circular , ADN/química , Cartilla de ADN/genética , Genómica , Humanos , Regiones Promotoras Genéticas/genética
12.
Mol Cell Biol ; 33(21): 4266-81, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24001773

RESUMEN

The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.


Asunto(s)
Fragilidad Cromosómica , G-Cuádruplex , Proteínas de Homeodominio/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Translocación Genética , Secuencia de Bases , Puntos de Rotura del Cromosoma , Sitios Frágiles del Cromosoma , Cromosomas Humanos Par 10 , Cromosomas Humanos Par 14 , Replicación del ADN , ADN de Cadena Simple , Secuencia Rica en GC , Expresión Génica , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Células K562 , Datos de Secuencia Molecular
13.
PLoS One ; 8(7): e69103, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922684

RESUMEN

BACKGROUND: Due to the functional defects in apoptosis signaling molecules or deficient activation of apoptosis pathways, leukemia has become an aggressive disease with poor prognosis. Although the majority of leukemia patients initially respond to chemotherapy, relapse is still the leading cause of death. Hence targeting apoptosis pathway would be a promising strategy for the improved treatment of leukemia. Hydantoin derivatives possess a wide range of important biological and pharmacological properties including anticancer properties. Here we investigated the antileukemic activity and mechanism of action of one of the potent azaspiro hydantoin derivative, (ASHD). MATERIALS AND METHODS: To investigate the antileukemic efficacy of ASHD, we have used MTT assay, cell cycle analysis by FACS, tritiated thymidine incorporation assay, Annexin V staining, JC1 staining and western blot analysis. RESULTS: Results showed that ASHD was approximately 3-fold more potent than the parent compounds in inducing cytotoxicity. Tritiated thymidine assay in conjunction with cell cycle analysis suggests that ASHD inhibited the growth of leukemic cells. The limited effect of ASHD on cell viability of normal cells indicated that it may be specifically directed to cancer cells. Translocation of phosphatidyl serine, activation of caspase 3, caspase 9, PARP, alteration in the ratio of BCL2/BAD protein expression as well as the loss of mitochondrial membrane potential suggests activation of the intrinsic pathway of apoptosis. CONCLUSION: These results could facilitate the future development of novel hydantoin derivatives as chemotherapeutic agents for leukemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Hidantoínas/farmacología , Imidazoles/farmacología , Leucemia/metabolismo , Leucemia/patología , Mitocondrias/metabolismo , Compuestos de Espiro/farmacología , Transporte Biológico/efectos de los fármacos , Inhibidores de Caspasas/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Roturas del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Células K562 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Biológicos , Fosfatidilserinas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
14.
Cell Mol Life Sci ; 70(8): 1381-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22948164

RESUMEN

Chromosomal translocations are characteristic features of many cancers, especially lymphoma and leukemia. However, recent reports suggest that many chromosomal translocations can be found in healthy individuals, although the significance of this observation is still not clear. In this review, we summarize recent studies on chromosomal translocations in healthy individuals carried out in different geographical areas of the world and discuss the relevance of the observation with respect to oncogenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias/genética , Translocación Genética , Genética de Población , Humanos
15.
Cell ; 151(7): 1474-87, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260137

RESUMEN

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pirimidinas/uso terapéutico , Bases de Schiff/uso terapéutico , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Ligasas/genética , Modelos Animales de Enfermedad , Diseño de Fármacos , Resistencia a Antineoplásicos , Humanos , Linfocitos/efectos de los fármacos , Linfoma/tratamiento farmacológico , Linfoma/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pirimidinas/síntesis química , Pirimidinas/química , Tolerancia a Radiación , Ratas , Bases de Schiff/síntesis química , Bases de Schiff/química , Alineación de Secuencia
16.
Genomics ; 100(2): 72-80, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22659239

RESUMEN

Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer.


Asunto(s)
Puntos de Rotura del Cromosoma , G-Cuádruplex , Leucemia/genética , Linfoma/genética , Translocación Genética/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
17.
J Biol Chem ; 287(12): 8688-701, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22275374

RESUMEN

The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.


Asunto(s)
Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 18/genética , Roturas del ADN de Cadena Simple , Proteínas Proto-Oncogénicas c-bcl-2/genética , Translocación Genética , Secuencia de Bases , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Linfoma Folicular/enzimología , Linfoma Folicular/genética , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-bcl-2/química , Recombinación Genética
18.
Nucleic Acids Res ; 39(14): 5813-25, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21498543

RESUMEN

Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.


Asunto(s)
Rotura Cromosómica , Translocación Genética , Citidina Desaminasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/genética
19.
Eur J Med Chem ; 46(6): 2109-16, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21439690

RESUMEN

Levamisole, the imidazo[2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 µM) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Tiadiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad , Tiadiazoles/síntesis química , Tiadiazoles/química , Células Tumorales Cultivadas
20.
Invest New Drugs ; 29(4): 523-33, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20069337

RESUMEN

DNA intercalating molecules are promising chemotherapeutic agents. In the present study, a novel DNA intercalating compound of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having 8-methyl-4-(3 diethylaminopropylamino) side chain is studied for its chemotherapeutic properties. Our results showed that 8-methyl-4-(3 diethylaminopropylamino) pyrimido [4',5':4,5] selenolo(2,3-b)quinoline (MDPSQ) induces cytotoxicity in a time- and concentration-dependent manner on leukemic cell lines. Both cell cycle analysis and tritiated thymidine assays revealed that MDPSQ affects DNA replication. Treatment with MDPSQ resulted in both elevated levels of DNA strand breaks and repair proteins, further indicating its cytotoxic effects. Besides, Annexin V/PI staining revealed that MDPSQ induces cell death by triggering necrosis rather than apoptosis.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Elipticinas/química , Elipticinas/farmacología , Leucemia/patología , Necrosis/inducido químicamente , Compuestos de Organoselenio/farmacología , Anexina A5/metabolismo , Apoptosis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN de Neoplasias/biosíntesis , Ensayos de Selección de Medicamentos Antitumorales , Inestabilidad Genómica/efectos de los fármacos , Humanos , Necrosis/patología , Proteínas de Neoplasias/metabolismo , Compuestos de Organoselenio/química , Fosfatidilserinas/metabolismo , Propidio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...