Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(2): 1464-1476, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175970

RESUMEN

The mRNA technology has emerged as a rapid modality to develop vaccines during pandemic situations with the potential to protect against endemic diseases. The success of mRNA in producing an antigen is dependent on the ability to deliver mRNA to the cells using a vehicle, which typically consists of a lipid nanoparticle (LNP). Self-amplifying mRNA (SAM) is a synthetic mRNA platform that, besides encoding for the antigen of interest, includes the replication machinery for mRNA amplification in the cells. Thus, SAM can generate many antigen encoding mRNA copies and prolong expression of the antigen with lower doses than those required for conventional mRNA. This work describes the morphology of LNPs containing encapsulated SAM (SAM LNPs), with SAM being three to four times larger than conventional mRNA. We show evidence that SAM changes its conformational structure when encapsulated in LNPs, becoming more compact than the free SAM form. A characteristic "bleb" structure is observed in SAM LNPs, which consists of a lipid-rich core and an aqueous RNA-rich core, both surrounded by a DSPC-rich lipid shell. We used SANS and SAXS data to confirm that the prevalent morphology of the LNP consists of two-core compartments where components are heterogeneously distributed between the two cores and the shell. A capped cylinder core-shell model with two interior compartments was built to capture the overall morphology of the LNP. These findings provide evidence that bleb two-compartment structures can be a representative morphology in SAM LNPs and highlight the need for additional studies that elucidate the role of spherical and bleb morphologies, their mechanisms of formation, and the parameters that lead to a particular morphology for a rational design of LNPs for mRNA delivery.


Asunto(s)
Liposomas , Nanopartículas , ARN Mensajero/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , Lípidos/química , ARN Interferente Pequeño/química
2.
Anal Chem ; 96(1): 212-219, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150504

RESUMEN

Customization of deuterated biomolecules is vital for many advanced biological experiments including neutron scattering. However, because it is challenging to control the proportion and regiospecificity of deuterium incorporation in live systems, often only two or three synthetic lipids are mixed together to form simplistic model membranes. This limits the applicability and biological accuracy of the results generated with these synthetic membranes. Despite some limited prior examination of deuterating Escherichia coli lipids in vivo, this approach has not been widely implemented. Here, an extensive mass spectrometry-based profiling of E. coli phospholipid deuteration states with several different growth media was performed, and a computational method to describe deuterium distributions with a one-number summary is introduced. The deuteration states of 36 lipid species were quantitatively profiled in 15 different growth conditions, and tandem mass spectrometry was used to reveal deuterium localization. Regressions were employed to enable the prediction of lipid deuteration for untested conditions. Small-angle neutron scattering was performed on select deuterated lipid samples, which validated the deuteration states calculated from the mass spectral data. Based on these experiments, guidelines for the design of specifically deuterated phospholipids are described. This unlocks even greater capabilities from neutron-based techniques, enabling experiments that were formerly impossible.


Asunto(s)
Difracción de Neutrones , Fosfolípidos , Deuterio/química , Difracción de Neutrones/métodos , Escherichia coli/metabolismo , Espectrometría de Masas en Tándem
3.
J Surfactants Deterg ; 26(3): 387-399, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37470058

RESUMEN

The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.

4.
J Vis Exp ; (185)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35969107

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) dispersed in agricultural ecosystems can pose a severe threat to biota in soil and nearby waterways. In addition, chemicals such as pesticides adsorbed by NPs can harm soil organisms and potentially enter the food chain. In this context, agriculturally utilized plastics such as plastic mulch films contribute significantly to plastic pollution in agricultural ecosystems. However, most fundamental studies of fate and ecotoxicity employ idealized and poorly representative MP materials, such as polystyrene microspheres. Therefore, as described herein, we developed a lab-scale multi-step procedure to mechanically form representative MPs and NPs for such studies. The plastic material was prepared from commercially available plastic mulch films of polybutyrate adipate-co-terephthalate (PBAT) that were embrittled through either cryogenic treatment (CRYO) or environmental weathering (W), and from untreated PBAT pellets. The plastic materials were then treated by mechanical milling to form MPs with a size of 46-840 µm, mimicking the abrasion of plastic fragments by wind and mechanical machinery. The MPs were then sieved into several size fractions to enable further analysis. Finally, the 106 µm sieve fraction was subjected to wet grinding to generate NPs of 20-900 nm, a process that mimics the slow size reduction process for terrestrial MPs. The dimensions and the shape for MPs were determined through image analysis of stereomicrographs, and dynamic light scattering (DLS) was employed to assess particle size for NPs. MPs and NPs formed through this process possessed irregular shapes, which is in line with the geometric properties of MPs recovered from agricultural fields. Overall, this size reduction method proved efficient for forming MPs and NPs composed of biodegradable plastics such as polybutylene adipate-co-terephthalate (PBAT), representing mulch materials used for agricultural specialty crop production.


Asunto(s)
Ecosistema , Microplásticos , Adipatos , Empleo , Plásticos , Suelo
5.
Biochim Biophys Acta Bioenerg ; 1863(7): 148596, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35853496

RESUMEN

The use of styrene-maleic acid copolymers (SMAs) to produce membrane protein-containing nanodiscs without the initial detergent isolation has gained significant interest over the last decade. We have previously shown that a Photosystem I SMALP from the thermophilic cyanobacterium, Thermosynechococcus elongatus (PSI-SMALP), has much more rapid energy transfer and charge separation in vitro than detergent isolated PSI complexes. In this study, we have utilized small-angle neutron scattering (SANS) to better understand the geometry of these SMALPs. These techniques allow us to investigate the size and shape of these particles in their fully solvated state. Further, the particle's proteolipid core and detergent shell or copolymer belt can be interrogated separately using contrast variation, a capability unique to SANS. Here we report the dimensions of the Thermosynechococcus elongatus PSI-SMALP containing a PSI trimer. At ~1.5 MDa, PSI-SMALP is the largest SMALP to be isolated; our lipidomic analysis indicates it contains ~1300 lipids/per trimeric particle, >40-fold more than the PSI-DDM particle and > 100 fold more than identified in the 1JB0 crystal structure. Interestingly, the lipid composition to the PSI trimer in the PSI-SMALP differs significantly from bulk thylakoid composition, being enriched ~50 % in the anionic sulfolipid, SQDG. Finally, utilizing the contrast match point for the SMA 1440 copolymer, we also can observe the ~1 nm SMA copolymer belt surrounding this SMALP for the first time, consistent with most models of SMA organization.


Asunto(s)
Cianobacterias , Lipidómica , Detergentes/química , Dispersión del Ángulo Pequeño , Thermosynechococcus
6.
Innovation (Camb) ; 3(1): 100199, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35059681

RESUMEN

Phonons are quasi-particles, observed as lattice vibrations in periodic materials, that often dampen in the presence of structural perturbations. Nevertheless, phonon-like collective excitations exist in highly complex systems, such as proteins, although the origin of such collective motions has remained elusive. Here we present a picture of temperature and hydration dependence of collective excitations in green fluorescent protein (GFP) obtained by inelastic neutron scattering. Our results provide evidence that such excitations can be used as a measure of flexibility/softness and are possibly associated with the protein's activity. Moreover, we show that the hydration water in GFP interferes with the phonon propagation pathway, enhancing the structural rigidity and stability of GFP.

7.
ChemSusChem ; 14(19): 3982-3984, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609796

RESUMEN

In their Editorial to the Special Issue on The Chemistry of Waste Plastics Upcycling, the Guest Editors Adam Guss, George Huber, Carol Lin, Xianzhi Meng, Hugh O'Neill, Arthur Ragauskas, Jia Wang, Yanqin Wang, and Frederik Wurm highlight some of the increasingly urgent efforts being made by chemists to address challenges related to the fate of plastics at the end of, their useful lives and the valorization of plastic waste.

8.
Biophys J ; 120(15): 3152-3165, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34197805

RESUMEN

The replication transcription complex (RTC) from the virus SARS-CoV-2 is responsible for recognizing and processing RNA for two principal purposes. The RTC copies viral RNA for propagation into new virus and for ribosomal transcription of viral proteins. To accomplish these activities, the RTC mechanism must also conform to a large number of imperatives, including RNA over DNA base recognition, basepairing, distinguishing viral and host RNA, production of mRNA that conforms to host ribosome conventions, interfacing with error checking machinery, and evading host immune responses. In addition, the RTC will discontinuously transcribe specific sections of viral RNA to amplify certain proteins over others. Central to SARS-CoV-2 viability, the RTC is therefore dynamic and sophisticated. We have conducted a systematic structural investigation of three components that make up the RTC: Nsp7, Nsp8, and Nsp12 (also known as RNA-dependent RNA polymerase). We have solved high-resolution crystal structures of the Nsp7/8 complex, providing insight into the interaction between the proteins. We have used small-angle x-ray and neutron solution scattering (SAXS and SANS) on each component individually as pairs and higher-order complexes and with and without RNA. Using size exclusion chromatography and multiangle light scattering-coupled SAXS, we defined which combination of components forms transient or stable complexes. We used contrast-matching to mask specific complex-forming components to test whether components change conformation upon complexation. Altogether, we find that individual Nsp7, Nsp8, and Nsp12 structures vary based on whether other proteins in their complex are present. Combining our crystal structure, atomic coordinates reported elsewhere, SAXS, SANS, and other biophysical techniques, we provide greater insight into the RTC assembly, mechanism, and potential avenues for disruption of the complex and its functions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares , ARN Viral/genética , Dispersión del Ángulo Pequeño , Proteínas no Estructurales Virales , Replicación Viral , Difracción de Rayos X
9.
Nano Lett ; 21(7): 2883-2890, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33734720

RESUMEN

Transparent wood biocomposites based on PMMA combine high optical transmittance with excellent mechanical properties. One hypothesis is that despite poor miscibility the polymer is distributed at the nanoscale inside the cell wall. Small-angle neutron scattering (SANS) experiments are performed to test this hypothesis, using biocomposites based on deuterated PMMA and "contrast-matched" PMMA. The wood cell wall nanostructure soaked in heavy water is quantified in terms of the correlation distance d between the center of elementary cellulose fibrils. For wood/deuterated PMMA, this distance d is very similar as for wood/heavy water (correlation peaks at q ≈ 0.1 Å-1). The peak disappears when contrast-matched PMMA is used, indeed proving nanoscale polymer distribution in the cell wall. The specific processing method used for transparent wood explains the nanocomposite nature of the wood cell wall and can serve as a nanotechnology for cell wall impregnation of polymers in large wood biocomposite structures.


Asunto(s)
Polimetil Metacrilato , Madera , Celulosa , Polímeros , Dispersión del Ángulo Pequeño
10.
Structure ; 28(12): 1313-1320.e3, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152262

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 requires rapid development of specific therapeutics and vaccines. The main protease of SARS-CoV-2, 3CL Mpro, is an established drug target for the design of inhibitors to stop the virus replication. Repurposing existing clinical drugs can offer a faster route to treatments. Here, we report on the binding mode and inhibition properties of several inhibitors using room temperature X-ray crystallography and in vitro enzyme kinetics. The enzyme active-site cavity reveals a high degree of malleability, allowing aldehyde leupeptin and hepatitis C clinical protease inhibitors (telaprevir, narlaprevir, and boceprevir) to bind and inhibit SARS-CoV-2 3CL Mpro. Narlaprevir, boceprevir, and telaprevir are low-micromolar inhibitors, whereas the binding affinity of leupeptin is substantially weaker. Repurposing hepatitis C clinical drugs as COVID-19 treatments may be a useful option to pursue. The observed malleability of the enzyme active-site cavity should be considered for the successful design of specific protease inhibitors.


Asunto(s)
Antivirales , Betacoronavirus , COVID-19 , Infecciones por Coronavirus , Antivirales/farmacología , Betacoronavirus/metabolismo , Dominio Catalítico , Infecciones por Coronavirus/tratamiento farmacológico , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Humanos , Pandemias , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Temperatura , Proteínas no Estructurales Virales
11.
IUCrJ ; 7(Pt 6)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-33063790

RESUMEN

The emergence of the novel coronavirus SARS-CoV-2 has resulted in a worldwide pandemic not seen in generations. Creating treatments and vaccines to battle COVID-19, the disease caused by the virus, is of paramount importance in order to stop its spread and save lives. The viral main protease, 3CL Mpro, is indispensable for the replication of SARS-CoV-2 and is therefore an important target for the design of specific protease inhibitors. Detailed knowledge of the structure and function of 3CL Mpro is crucial to guide structure-aided and computational drug-design efforts. Here, the oxidation and reactivity of the cysteine residues of the protease are reported using room-temperature X-ray crystallography, revealing that the catalytic Cys145 can be trapped in the peroxysulfenic acid oxidation state at physiological pH, while the other surface cysteines remain reduced. Only Cys145 and Cys156 react with the alkylating agent N-ethylmaleimide. It is suggested that the zwitterionic Cys145-His45 catalytic dyad is the reactive species that initiates catalysis, rather than Cys145-to-His41 proton transfer via the general acid-base mechanism upon substrate binding. The structures also provide insight into the design of improved 3CL Mpro inhibitors.

12.
J Biol Chem ; 295(50): 17365-17373, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33060199

RESUMEN

The main protease (3CL Mpro) from SARS-CoV-2, the etiological agent of COVID-19, is an essential enzyme for viral replication. 3CL Mpro possesses an unusual catalytic dyad composed of Cys145 and His41 residues. A critical question in the field has been what the protonation states of the ionizable residues in the substrate-binding active-site cavity are; resolving this point would help understand the catalytic details of the enzyme and inform rational drug development against this pernicious virus. Here, we present the room-temperature neutron structure of 3CL Mpro, which allowed direct determination of hydrogen atom positions and, hence, protonation states in the protease. We observe that the catalytic site natively adopts a zwitterionic reactive form in which Cys145 is in the negatively charged thiolate state and His41 is doubly protonated and positively charged, instead of the neutral unreactive state usually envisaged. The neutron structure also identified the protonation states, and thus electrical charges, of all other amino acid residues and revealed intricate hydrogen-bonding networks in the active-site cavity and at the dimer interface. The fine atomic details present in this structure were made possible by the unique scattering properties of the neutron, which is an ideal probe for locating hydrogen positions and experimentally determining protonation states at near-physiological temperature. Our observations provide critical information for structure-assisted and computational drug design, allowing precise tailoring of inhibitors to the enzyme's electrostatic environment.


Asunto(s)
Proteasas 3C de Coronavirus/química , Modelos Moleculares , Neutrones , SARS-CoV-2/genética , Dominio Catalítico , Cristalografía por Rayos X
13.
Proc Natl Acad Sci U S A ; 117(29): 16776-16781, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636260

RESUMEN

A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.


Asunto(s)
Biotecnología/métodos , Lignina/química , Madera/química , Proteínas Bacterianas/metabolismo , Biomasa , Celulasa/metabolismo , Furanos/química , Gluconacetobacter xylinus/enzimología , Hidrólisis , Lignina/metabolismo , Populus/química , Solventes/química , Tensoactivos/química
14.
PLoS One ; 15(7): e0235893, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32692771

RESUMEN

Terrestrial nanoplastics (NPs) pose a serious threat to agricultural food production systems due to the potential harm of soil-born micro- and macroorganisms that promote soil fertility and ability of NPs to adsorb onto and penetrate into vegetables and other crops. Very little is known about the dispersion, fate and transport of NPs in soils. This is because of the challenges of analyzing terrestrial NPs by conventional microscopic techniques due to the low concentrations of NPs and absence of optical transparency in these systems. Herein, we investigate the potential utility of small-angle neutron scattering (SANS) and Ultra SANS (USANS) to probe the agglomeration behavior of NPs prepared from polybutyrate adipate terephthalate, a prominent biodegradable plastic used in agricultural mulching, in the presence of vermiculite, an artificial soil. SANS with the contrast matching technique was used to study the aggregation of NPs co-dispersed with vermiculite in aqueous media. We determined the contrast match point for vermiculite was 66% D2O / 33% H2O. At this condition, the signal for vermiculite was ~50-100%-fold lower that obtained using neat H2O or D2O as solvent. According to SANS and USANS, smaller-sized NPs (50 nm) remained dispersed in water and did not undergo size reduction or self-agglomeration, nor formed agglomerates with vermiculite. Larger-sized NPs (300-1000 nm) formed self-agglomerates and agglomerates with vermiculite, demonstrating their significant adhesion with soil. However, employment of convective transport (simulated by ex situ stirring of the slurries prior to SANS and USANS analyses) reduced the self-agglomeration, demonstrating weak NP-NP interactions. Convective transport also led to size reduction of the larger-sized NPs. Therefore, this study demonstrates the potential utility of SANS and USANS with contrast matching technique for investigating behavior of terrestrial NPs in complex soil systems.


Asunto(s)
Nanoestructuras/análisis , Poliésteres/análisis , Contaminantes del Suelo/análisis , Suelo/química , Nanoestructuras/química , Difracción de Neutrones , Poliésteres/química , Dispersión del Ángulo Pequeño , Contaminantes del Suelo/química
15.
Nat Commun ; 11(1): 3202, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581217

RESUMEN

The COVID-19 disease caused by the SARS-CoV-2 coronavirus has become a pandemic health crisis. An attractive target for antiviral inhibitors is the main protease 3CL Mpro due to its essential role in processing the polyproteins translated from viral RNA. Here we report the room temperature X-ray structure of unliganded SARS-CoV-2 3CL Mpro, revealing the ligand-free structure of the active site and the conformation of the catalytic site cavity at near-physiological temperature. Comparison with previously reported low-temperature ligand-free and inhibitor-bound structures suggest that the room temperature structure may provide more relevant information at physiological temperatures for aiding in molecular docking studies.


Asunto(s)
Betacoronavirus/enzimología , Cisteína Endopeptidasas/química , Proteínas no Estructurales Virales/química , Dominio Catalítico , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , SARS-CoV-2 , Temperatura , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(41): 20446-20452, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548393

RESUMEN

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Humanos , Modelos Químicos , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Sci Rep ; 9(1): 5711, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952892

RESUMEN

The photosynthetic machinery of the cyanobacterium Synechocystis sp. PCC 6803 resides in flattened membrane sheets called thylakoids, situated in the peripheral part of the cellular cytoplasm. Under photosynthetic conditions these thylakoid membranes undergo various dynamical processes that could be coupled to their energetic functions. Using Neutron Spin Echo Spectroscopy (NSE), we have investigated the undulation dynamics of Synechocystis sp. PCC 6803 thylakoids under normal photosynthetic conditions and under chemical treatment with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), an herbicide that disrupts photosynthetic electron transfer. Our measurements show that DCMU treatment has a similar effect as dark conditions, with differences in the undulation modes of the untreated cells compared to the chemically inhibited cells. We found that the disrupted membranes are 1.5-fold more rigid than the native membranes during the dark cycle, while in light they relax approximately 1.7-fold faster than native and they are 1.87-fold more flexible. The strength of the herbicide disruption effect is characterized further by the damping frequency of the relaxation mode and the decay rate of the local shape fluctuations. In the dark, local thicknesses and shape fluctuations relax twice as fast in native membranes, at 17% smaller mode amplitude, while in light the decay rate of local fluctuations is 1.2-fold faster in inhibited membranes than in native membranes, at 56% higher amplitude. The disrupted electron transfer chain and the decreased proton motive force within the lumenal space partially explain the variations observed in the mechanical properties of the Synechocystis membranes, and further support the hypothesis that the photosynthetic process is tied to thylakoid rigidity in this type of cyanobacterial cell.


Asunto(s)
Transporte de Electrón/efectos de los fármacos , Membranas Intracelulares/química , Fotosíntesis/efectos de los fármacos , Synechocystis/efectos de los fármacos , Tilacoides/efectos de los fármacos , Diurona/farmacología , Diurona/toxicidad , Synechocystis/metabolismo , Tilacoides/metabolismo
18.
Planta ; 249(5): 1465-1475, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30697645

RESUMEN

MAIN CONCLUSION: Common duckweed Lemna minor was cultivated in 50% D2O to produce biomass with 50-60% deuterium incorporation containing cellulose with degree of polymerization close (85%) to that of H2O-grown controls. The small aquatic plant duckweed, particularly the genus Lemna, widely used for toxicity testing, has been proposed as a potential source of biomass for conversion into biofuels as well as a platform for production of pharmaceuticals and specialty chemicals. Ability to produce deuterium-substituted duckweed can potentially extend the range of useful products as well as assist process improvement. Cultivation of these plants under deuterating conditions was previously been reported to require addition of kinetin to induce growth and was hampered by anomalies in cellular morphology and protein metabolism. Here, we report the production of biomass with 50-60% deuterium incorporation by long-term photoheterotrophic growth of common duckweed Lemna minor in 50% D2O with 0.5% glucose. L. minor grown in 50% D2O without addition of kinetin exhibited a lag phase twice that of H2O-grown controls, before start of log phase growth at 40% of control rates. Compared to continuous white fluorescent light, growth rates increased fivefold for H2O and twofold for 50% D2O when plants were illuminated at higher intensity with a metal halide lamp and a diurnal cycle of 12-h light/12-h dark. Deuterium incorporation was determined by a combination of 1H and 2H nuclear magnetic resonance (NMR) to be 40-60%. The cellulose from the deuterated plants had an average-number degree of polymerization (DPn) and polydispersity index (PDI) close to that of H2O-grown controls, while Klason lignin content was reduced. The only major gross morphological change noted was root inhibition.


Asunto(s)
Araceae/metabolismo , Biomasa , Deuterio/metabolismo , Celulosa/metabolismo , Espectroscopía de Resonancia Magnética
19.
Soft Matter ; 14(25): 5270-5276, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29892769

RESUMEN

We demonstrate here for the first time via small-angle neutron scattering (SANS) that the middle, bicontinuous microemulsion (BµE) phase of Winsor-III systems undergoes a gradual change of structure and composition in the vertical direction, contrary to the commonly held belief of uniform structure and composition. A vertical stage was deployed to enable precise alignment of a custom-designed rectangular cell containing the WIII system with respect to the neutron beam, allowing for several different vertical positions to be analyzed. For the water/AOT/CK-2,13 (two-tailed alkyl ethoxylate containing a 1,3-dioxolane linkage)/heptane Winsor-III system, the quasi-periodic repeat distance (d) and correlation length (ξ), obtained from the Teubner-Strey model applied to the SANS data, decreased and the surface area per volume of the surfactant monolayer (via Porod analysis) increased in the downward direction, trends that reflect an increase of surfactant concentration, consistent with the ultralow interfacial tension that often occurs for the lower liquid-liquid interface of many WIII systems. The water/sodium dodecyl sulfate (SDS)/1-pentanol/dodecane system shared the same trend with regard to d as observed for AOT/CK-2,13. In contrast, for SDS/pentanol, ξ increased and the amphiphilicity factor (fa) decreased in the downward direction, trends consistent with a decrease of cosurfactant (pentanol) concentration in the downward direction. Non-uniformity in the vertical direction has implications in the transport of solutes between WIII phases during the extractive purification of proteins or the removal of heavy metals and pollutants from wastewater, or the deposition of BµEs onto hydrophilic vs. hydrophobic surfaces as thin coatings.

20.
J Phys Chem Lett ; 9(1): 70-75, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29232139

RESUMEN

In plant cell walls and cellulose-containing composites, nanocrystalline cellulose interacts with water molecules or matrix polymers through hydrogen bonding of the hydroxyl groups at the cellulose surface. These interactions play key roles in cellulose assembly in plant cell walls and mechanical properties of cellulose composites; however, they could not be studied properly due to the spectroscopic difficulty of selectively detecting the surface hydroxyl groups of nanocrystalline domains. This study employed the sum frequency scattering principle to distinguish the hydroxyl groups inside of the crystalline nanodomain of cellulose and those exposed at the surface of crystalline domains. The comparison of the spectra at various scattering angles revealed that the OH peak near ∼3450 cm-1 comes from the weakly hydrogen-bonded OH groups at the surface of crystalline cellulose. Also, a time delay measurement found that the sharp vibrational features observed near 3700 cm-1 can be attributed to isolated OH groups not accessible by ambient water molecules. These findings allow the distinction of surface versus bulk OH groups in sum frequency generation vibrational spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...