Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339093

RESUMEN

Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.


Asunto(s)
Antiinfecciosos , Lactoferrina , Proteínas Recombinantes , Animales , Bovinos , Humanos , Antiinfecciosos/farmacología , Escherichia coli/metabolismo , Fermentación , Glucosa/metabolismo , Lactoferrina/biosíntesis , Lactoferrina/genética , Lactoferrina/farmacología , Pichia/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomycetales , Staphylococcus aureus/efectos de los fármacos , Porcinos
2.
Stem Cells Dev ; 31(21-22): 720-729, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35801658

RESUMEN

Haploinsufficiency of genes that participate in telomere elongation and maintenance processes, such as telomerase RNA component (Terc) and telomere reverse transcriptase (Tert), often leads to premature aging-related diseases such as dyskeratosis congenita and aplastic anemia. Previously, we reported that when mouse Terc+/- tail tip fibroblasts (TTFs) were used as donor cells for somatic cell nuclear transfer (SCNT, also known as cloning), the derivative embryonic stem cells (ntESCs) had elongated telomeres. In the present work, we are interested to know if an additional round of SCNT, or recloning, could lead to further elongation of telomeres. Terc+/- TTFs were used to derive the first-generation (G1) ntESCs, followed by a second round of SCNT using G1-Terc+/- ntESCs as donor cells to derive G2-Terc+/- ntESCs. Multiple lines of G1- and G2-Terc+/- ntESCs were efficiently established, and all expressed major pluripotent markers and supported efficient chondrocyte differentiation in vitro. Compared with donor TTFs, telomere lengths of G1 ntESCs were elongated to the level comparable with that in wild-type ntESCs. Interestingly, recloning did not further elongate the telomere lengths of Terc+/- ntESCs. Together, our work demonstrates that while a single round of SCNT is a viable means to reprogram Terc haploinsufficient cells to the ESC state, and to elongate these cells' telomere lengths, a second round of SCNT does not necessarily further elongate the telomeres.


Asunto(s)
Telomerasa , Ratones , Animales , Telomerasa/genética , Telomerasa/metabolismo , ARN/genética , Telómero/genética , Células Madre Embrionarias/metabolismo
3.
Front Surg ; 9: 939818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865034

RESUMEN

Background: Giant true subclavian artery aneurysms (SAAs) (>5 cm) are rare. Technical and anatomical considerations complicate the endovascular treatment of SAAs and pose some challenges. Here, we present a giant right SAA that was successfully excluded using stent grafts with the pull-through technique after two interventional steps and discuss the pull-through technique details as well as the lessons to be learned from this case. Methods: A 50-year-old man presented at our department complaining of dyspnea and hoarseness. Computed tomography angiography (CTA) showed a giant right SAA with partial intraluminal thrombus and severe angulated aneurysm necks originating from the proximal right subclavian artery, approximately 70 × 71 mm in size. Outcomes: An 8 × 100-mm Gore Viabahn was selected to exclude the SAA. A decision was made to stabilize the wire tension using the pull-through technique. Final angiography showed that the SAA was essentially excluded, and slight endoleak was observed. At 6 months, imaging showed that the aneurysm was not obviously shrinking, there was still an endoleak and stent graft dislodgement was observed. Angiography confirmed a type Ia endoleak, which was managed by the placement of a 10 × 50-mm Gore Viabahn, again with the assistance of the pull-through technique. At the 25-month follow-up, CTA showed that the SAA was satisfactorily excluded, with no endoleak, and the SAA was reduced in size. Conclusions: Endovascular treatment of SAAs is a safe, reliable and minimally invasive approach. The pull-through technique may improve wire tension and device stabilization. Additionally, size selection and positioning should be reappraised under a severely angulated aneurysm neck.

4.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409332

RESUMEN

Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5' homologous arm inverted repeat donor plasmid (5'IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3' inverted terminal repeat/inverted repeat donor plasmid (3'ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3'-overhang integration into the host genome via homologous recombination machinery.


Asunto(s)
ADN Cruciforme , ARN Guía de Kinetoplastida , Animales , Recombinación Homóloga , Ratones , Ratones Transgénicos , Células 3T3 NIH , ARN Guía de Kinetoplastida/genética
5.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466434

RESUMEN

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (-1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (-1369~+28 nt), Δ2-pGzmg (-939~+28 nt), Δ3-pGzmg (-711~+28 nt) and Δ4-pGzmg (-417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the -417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Granzimas/genética , Factor de Transcripción STAT3/genética , Animales , Blastocisto/fisiología , Núcleo Celular/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos ICR , Embarazo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Cigoto/fisiología
6.
BMC Vet Res ; 15(1): 191, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174527

RESUMEN

BACKGROUND: Autologous platelet concentrates are currently widely used across different areas of regenerative medicine in order to enhance the wound healing process. Although several protocols for platelet concentrates are available, their application remains difficult due to different protocols leading to distinct products with vary potential biological uses. In this study, we attempted to make a platelet patch (PP) using mixtures of platelet rich plasma (PRP) injection and platelet rich fibrin (PRF) to promote wound repair and regeneration. RESULTS: Experiments were performed using a full-thickness wound model in mini-pigs. Autologous PRP, PRF and PP were prepared immediately before creating four full-thickness skin wounds in pigs. We quantified concentrations of platelets, thrombin and various growth factors to ensure that the desired effect can be produced. After surgery, hydrocolloid dressing, PRP injection, PRF and PP was applied to experimentally induced wounds. Application efficacy was evaluated by measurement of wound sizes and histological examination. The results indicated that all wounds showed a significant size reduction. Wound repair efficacy in response to PP treatment exhibited enhanced re-epithelialization compared to PRP and PRF (P < 0.05) and higher wound contraction than did PRF application (P < 0.05). Another aspect, experiment using DsRed transgenic pigs as blood donors demonstrated that leucocytes in PP were incorporated into the wound bed at the end of the study, suggesting that leucocytes activity is stimulated in response to PP application. Safety of the experimental processes was also confirmed by examination of organ biopsies. CONCLUSIONS: We used a mini-pig model to evaluate the efficacy of lab-made PP on induced full-thickness wound healing. Results demonstrated that application of one piece of PP was enough to obtain comparable efficacy versus general utilization of PRP or PRF for wound care. We also demonstrated that leucocytes in PP were incorporated into the wound bed and no safety concerns have been found in the whole experiment. This study provides a novel and feasible method for veterinary or clinical wound care.


Asunto(s)
Fibrina Rica en Plaquetas , Plasma Rico en Plaquetas , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Leucocitos/efectos de los fármacos , Regeneración/efectos de los fármacos , Porcinos , Porcinos Enanos , Heridas y Lesiones/terapia
7.
Cell Rep ; 9(5): 1603-1609, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25464850

RESUMEN

Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs) have been efficiently achieved by somatic cell nuclear transfer (SCNT). We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc(+/-)) mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc(+/-) cells exhibit naive pluripotency as evidenced by generation of Terc(+/-) ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.


Asunto(s)
Células Madre Pluripotentes Inducidas/enzimología , Telómero/genética , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Haploinsuficiencia , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Transferencia Nuclear , Telomerasa/genética , Homeostasis del Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...