Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Fitoterapia ; 174: 105830, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286316

RESUMEN

Genus Bauhinia has been widely used in the treatment of diabetes, malaria, cough, headache, fever, piles, dysentery, flatulence, diarrhoea, ulcer and cardiovascular problems. Among 600 species of this genus, Bauhinia variegata, B. purpurea, B. championii, B. racemosa, and B. forficata are commonly used in the traditional medicine and found to be throughly investigated for their medicinal properties. They possess diverse pharmacological activities such as anti-diabetic, anti-microbial, antioxidant, anti-arthritic, cardioprotective, hepatoprotective, nephroprotective, fibrinolytic, and wound healing properties and most of the biological activities are corelating with traditional knowledge. Phytochemical analysis indicated that steroids, terpenoids, and flavonoids are prominent in the selected species, whereas bauhiniastatins, bauhinoxepins, racemosols, roseosides, and bauhichamines are found unique to the genus. This review aims to decipher active molecules from the aforementioned species of Bauhinia covering comprehensive analysis of phytochemistry, pharmacological activities and traditional uses. The data has been carefully analyzed to find compounds or fractions with a translational value. In most of the cases, the pharmacological activities have been established, however, further studies are needed such as safety evaluations, target identification, bioavailability, metabolite identification, and pharmacokinetic properties. In conclusion, the pharmacological potential of Bauhinia plants show promise with various leads such as insulin-like protein, roseoside, bauhiniastatin, and melibiose binding lectin. However, further investigations are required to address existing gaps and advance them towards product development. This review will lay the groundwork for future research initiatives aimed at fully realizing the therapeutic potential of Bauhinia plants.


Asunto(s)
Bauhinia , Bauhinia/química , Estructura Molecular , Medicina Tradicional , Fitoterapia , Flavonoides , Fitoquímicos/farmacología , Fitoquímicos/análisis , Etnofarmacología , Extractos Vegetales/farmacología
2.
J Biomol Struct Dyn ; : 1-16, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37440426

RESUMEN

The diversified eating habits and religious culture of Indian population may be one of the reasons they largely contribute to the global diabetes burden. In the present investigation, an in-silico approach was carried out to explore hub genes in the Indian population with Type 2 Diabetes Mellitus (T2DM) that are scantily reported in the GWAS catalogue and probable potential anti-diabetic drugs from plants. This computational approach unwrapped LEP (leptin) as the hub gene among 170 genes analyzed with 14 non-synonymous single nucleotide polymorphisms (nsSNPs) with MAF < 0.01. The mutation of the LEP gene leads to a decrease in leptin concentration, which increases the risk of obesity and T2DM. According to the DUET webserver, 11 of 14 mutations examined were found to destabilize the LEP protein. Among 14, four barely reported LEP variants rs781301976 (I45N), rs776443424 (S52F), rs200915360 (D76Y), and rs1191666811 (D162N) were unzipped to be associated with T2DM, which may be the probable potential drug targets. The virtual screening revealed Vescalagin as having the highest binding energy among 336 natural compounds. Molecular docking of Vescalagin depicted higher binding energy (-9.0 kcal/mol) against mutated LEP [rs200915360 (D76Y)] compared to wild (-8.9 kcal/mol) and LEP-Metformin complexes. The trajectory analysis of MD simulations revealed that Vescalagin was more effective than Metformin in stabilizing the system. The present study suggests that the associations of the investigated nsSNPs in LEP [rs200915360 (D76Y)] and others can be key factors in the predominant role of T2DM morbidity in the Indian population that can be used as potential markers and drug targets for T2DM therapeutics.Communicated by Ramaswamy H. Sarma.

3.
Indian J Microbiol ; 62(2): 204-214, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462704

RESUMEN

Lichens are used in folklore medicines across the globe for wound healing and to treat skin disorders and respiratory diseases. They are an intricate symbiosis between fungi and algae with the domination of fungal counterparts. Recent research studies pointed out that yeast is a third major partner in lichens. Endolichenic fungi (ELF) are also a part of this complex miniature ecosystem. The highly competitive environment of lichens compels ELF to produce toxic metabolites which are comparatively less explored for their chemical diversity and use. Here, we investigated 31 ELF isolated from 32 lichens found on mangrove plants at Puttalam Lagoon of Sri Lanka to find cytotoxic molecules by applying LC-UV-HRMS analysis and in vitro bioassays. The studies resulted in the identification of three potent cytotoxic molecules from endolichenic fungi Talaromyces pinophilus isolated from host lichen Porina tetracerae. The ethyl acetate extract of this fungus showed moderate cytotoxicity against the breast cancer cell line. Chemical characterization of ethyl acetate extract of T. pinophilus produced peniazaphilin B, 152G256α-1, and ES-242-3. The structures of these molecules were confirmed by NMR and MS data. We are reporting ES-242-3 for the first time from the genus Talaromyces and peniazaphilin B and 152G256α-1 from T. pinophilus. The isolated compounds were evaluated for their anticancer potential against breast, oral and cervical cancer cell lines. Compound 152G256α-1 showed potent cytotoxicity against oral cancer (CAL-27 cell line) with an IC50 value of 2.96 ± 0.17 µM while ES-242-3 showed the best activity against breast cancer (MCF-7 cell line) and cervical cancer (HeLa cell line) with IC50 value 14.08 ± 0.2 µM and 4.46 ± 0.05 µM respectively. An in-silico analysis was carried out to predict the mechanism of in-vitro activity, drug likeliness, and pharmacokinetic profile of the isolated compounds. The study confirms the potential of ELF T. pinophilus to produce diverse bioactive scaffolds and encourages the researchers to further explore the fungus and its metabolites with newer technologies to produce potent anticancer leads. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-021-00994-8.

4.
Chemosphere ; 297: 134119, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35227749

RESUMEN

Photocatalytic treatment of wastewater using nanomaterials is an efficient energy saving technology. Yet the practical application of the technology is limited because of difficulty in developing the stable, supported photocatalytic nanoparticles that can be used under continuous flow conditions. Here, we report an efficient removal of glyphosate (GLP) and Cr(VI) from water under batch as well as continuous flow conditions using the activated carbon fiber (ACF)-supported nanocomposite of CoNiWO4 (CNW) and g-C3N4 (gCN), as a photocatalyst. CNW-gCN/ACF is synthesized using a one-step strategy, and spectroscopic characterization techniques are used to corroborate the formation of the Z-scheme-based CNW-gCN heterojunction in the ACF substrate. Efficacy of the photocatalyst is assessed in visible light irradiation. The batch activity data of the individual pollutant show the complete oxidation of GLP at 30 ppm and reduction of Cr(VI) at 200 ppm concentration levels in 60 and 150 min, respectively at 1 g/L dose of CNW-gCN/ACF. Photocatalytic efficiency of CNW-gCN/ACF in the simultaneous removal of both pollutants from co-contaminated feed is found to be greater than that in single-feed system under identical experimental conditions. Tested under flow conditions, CNW-gCN/ACF shows approximately the same rates of oxidation and reduction as prevalent under batch conditions, indicating the efficient immobilization of the nanocatalyst particles in ACF, which not only prevents elution of the catalyst but also improves its reusability. The toxicity data indicate the treated water samples to be non-toxic. The current study provides an efficient method for developing supported nanomaterial photocatalysts for treating flowing co-contaminated wastewater.


Asunto(s)
Carbón Orgánico , Aguas Residuales , Fibra de Carbono , Cromo , Glicina/análogos & derivados , Aguas Residuales/química , Agua , Glifosato
5.
Chem Biodivers ; 19(4): e202100976, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35315213

RESUMEN

Fungi are known to produce diverse scaffolds possessing unique biological activities, however, to date, no molecule discovered from a fungal source has reached the market as an anti-cancer drug. Every year number of cytotoxic molecules of fungal origin are getting published and critical analysis of those compounds is necessary to identify the potent ones. A review mentioning the best cytotoxic fungal metabolites and their status in the drug development was published in 2014. In this report, we have included 176 cytotoxic molecules isolated from fungi after 2014 and categorized them according to their potencies such as IC50 values below 1 µM, 1-5 µM, and 5-10 µM. The emphasis was given to those 42 molecules which have shown IC50 less than 1 µM and discussed to a great extent. This review shall provide potent scaffolds of fungal origin which can be given priority in the development as a drug candidate for cancer therapeutics.


Asunto(s)
Antineoplásicos , Hongos , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Hongos/metabolismo
6.
Sci Rep ; 10(1): 14893, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913186

RESUMEN

Scanning Spreading Resistance Microscopy is a well-established technique for obtaining quantitative two- and three-dimensional carrier profiles in semiconductor devices with sub-nm spatial resolution. However, for sub-100 nm devices, the use of focused ion beam becomes inevitable for exposing the region of interest on a sample cross section. In this work, we investigate the impact of the focused ion beam milling on spreading resistance analysis and we show that the electrical effect of the focused ion beam extends far beyond the amorphous region and depends on the dopant concentration, ion beam energy, impact angle, and current density. For example, for dopant concentrations between 1.0 × 1020 and 1.5 × 1016 cm-3 we observe dopant deactivation at least between 23 and 175 nm for a glancing 30 keV ion beam. Further, we show that dopant deactivation is caused by defect diffusion during milling and is not directly impacted by the presence of Gallium in the sample. Later, we also discuss potential ways to mitigate these effects.

7.
Pharm Dev Technol ; 23(6): 608-619, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28368746

RESUMEN

Developing drug formulations for poorly water-soluble drugs is a major challenge for pharmaceutical industries as the poor water solubility limits bioavailability of these drugs. Production of nanoparticles/microparticles of these drugs is one of the ways to improve dissolution rates by increasing interfacial area for dissolution. Curcumin, a compound obtained from the rhizome of curcuma longa (turmeric roots), is a pharmaceutically viable molecule. However, poor aqueous solubility limits its therapeutic use. In this work, we report studies conducted to continuously produce aqueous suspensions of curcumin nano/micro particles. Influence of process parameters such as ultrasound, additives, and solvent to antisolvent ratio on polymorphic outcome and morphology of precipitated particles has been investigated. Ultrasound was found to greatly influence the polymorphic form and the morphology of precipitated particles. Nucleation rates, mixing time, and solid-liquid interfacial energies were also estimated to understand the effect of various processing parameters on the precipitation process.


Asunto(s)
Antineoplásicos/química , Curcumina/química , Composición de Medicamentos/métodos , Agua/química , Precipitación Química , Curcuma/química , Composición de Medicamentos/instrumentación , Diseño de Equipo , Nanopartículas/química , Tamaño de la Partícula , Solubilidad , Sonicación , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...