Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 650: 123698, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38081559

RESUMEN

Pulmonary delivery of protein-based therapeutics, including antibodies, is a promising option for treating respiratory diseases. Spray drying is a widely used method for producing dry powder formulations with mannitol being a commonly used excipient for these inhalation formulations. There is limited research available concerning the utilization of mannitol as an excipient in the spray drying of proteins and its impact on aerosol performance. This study highlights the importance to understand mannitol's potential role and impact in this context. To investigate the impact of mannitol on physical stability and aerosolization of spray-dried protein formulations, bovine serum albumin (BSA) was employed as a model protein and formulated with different concentrations of mannitol via spray drying. The spray-dried solids were characterized for their particle size using Malvern mastersizer and aerodynamic particle size using next generation impactor (NGI). Additionally, the solids were characterized with solid-state Fourier-transform infrared spectroscopy (ssFTIR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance spectroscopy (ssNMR) to analyze the change in their secondary structure, crystallinity, particle morphology, and protein-excipient interaction, respectively. Size exclusion chromatography (SEC) was used to investigate changes in monomer content resulting from storage under stressed condition of 40 °C. Protein formulations containing more than 33 % mannitol by weight showed crystallization tendencies, causing an increase in monomer loss over time. ssNMR data also showed mixing heterogeneity of BSA and mannitol in the formulations with high mannitol contents. Futhermore, fine particle fraction (FPF) was found to decrease over time for the formulations containing BSA: Mannitol in the ratios of 2:1, 1:2, and 1:5, due to particle agglomeration induced by crystallization of mannitol. This study underscores the significant influence of excipients such as mannitol on the aerosol performance and storage stability of spray-dried protein formulations.


Asunto(s)
Excipientes , Manitol , Polvos/química , Manitol/química , Excipientes/química , Administración por Inhalación , Aerosoles/química , Tamaño de la Partícula , Proteínas , Inhaladores de Polvo Seco/métodos
2.
Pharm Res ; 40(10): 2355-2370, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37131104

RESUMEN

BACKGROUND: Spray-drying is considered a promising alternative drying method to lyophilization (freeze-drying) for therapeutic proteins. Particle counts in reconstituted solutions of dried solid dosage forms of biologic drug products are closely monitored to ensure product quality. We found that high levels of particles formed after reconstitution of protein powders that had been spray-dried under suboptimal conditions. METHODS: Visible and subvisible particles were evaluated. Soluble proteins in solution before spray-drying and in the reconstituted solution of spray-dried powder were analyzed for their monomer content levels and melting temperatures. Insoluble particles were collected and analyzed by Fourier transform infrared microscopy (FTIR), and further analyzed with hydrogen-deuterium exchange (HDX). RESULTS: Particles observed after reconstitution were shown not to be undissolved excipients. FTIR confirmed their identity as proteinaceous in nature. These particles were therefore considered to be insoluble protein aggregates, and HDX was applied to investigate the mechanism underlying aggregate formation. Heavy-chain complementarity-determining region 1 (CDR-1) in the aggregates showed significant protection by HDX, suggesting CDR-1 was critical for aggregate formation. In contrast, various regions became more conformationally dynamic globally, suggesting the aggregates have lost protein structural integrity and partially unfolded after spray-drying. DISCUSSION: The spray-drying process could have disrupted the higher-order structure of proteins and exposed the hydrophobic residues in CDR-1 of the heavy chain, contributing to the formation of aggregate through hydrophobic interactions upon reconstitution of spray-dried powder. These results can contribute to efforts to design spray-dry resilient protein constructs and improve the robustness of the spray-drying process.


Asunto(s)
Microscopía , Proteínas , Polvos/química , Liofilización , Tamaño de la Partícula
3.
Int J Pharm ; 641: 123084, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37245738

RESUMEN

The freezing step of the lyophilization process can impact nanoparticle stability due to increased particle concentration in the freeze-concentrate. Controlled ice nucleation is a technique to achieve uniform ice crystal formation between vials in the same batch and has attracted increasing attention in pharmaceutical industry. We investigated the impact of controlled ice nucleation on three types of nanoparticles: solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNs), and liposomes. Freezing conditions with different ice nucleation temperatures or freezing rates were employed for freeze-drying all formulations. Both in-process stability and storage stability up to 6 months of all formulations were assessed. Compared with spontaneous ice nucleation, controlled ice nucleation did not cause significant differences in residual moisture and particle size of freeze-dried nanoparticles. The residence time in the freeze-concentrate was a more critical factor influencing the stability of nanoparticles than the ice nucleation temperature. Liposomes freeze-dried with sucrose showed particle size increase during storage regardless of freezing conditions. By replacing sucrose with trehalose, or adding trehalose as a second lyoprotectant, both the physical and chemical stability of freeze-dried liposomes improved. Trehalose was a preferable lyoprotectant than sucrose to better maintain the long-term stability of freeze-dried nanoparticles at room temperature or 40 °C.


Asunto(s)
Hielo , Nanopartículas , Liposomas , Trehalosa , Liofilización/métodos , Sacarosa/química
4.
J Pharm Sci ; 112(6): 1586-1594, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933655

RESUMEN

Prefilled syringes are widely used as a primary container for therapeutic proteins because they are more convenient than glass vials. The stability of biologic molecules can be affected by different syringe materials and techniques, such as silicone oil levels and coating method, amount of tungsten remaining in the glass barrel after using a tungsten pin to create the needle hole, and end of the syringe, which can be Luer locked or pre-staked with a needle. We investigated the impact of these parameters by using a monoclonal antibody to collect the antibody's stability profile and the prefilled syringes' functionality data. Silicone oil levels had no impact on aggregation levels, and particle counts were lowest for silicone oil-free syringes. Functionality performance was similar and did not change throughout all stability time points for all syringe configurations. The break-loose force for Ompi syringes was initially lower and increased over time to align with those of the other configurations, all of which remained well below 25 N. Tungsten contaminants and agitation stress from shipping studies did not impact quality attributes. This work can help guide the development of similar products in prefilled syringes to ensure selection of the primary container that provides adequate stability for the protein, as well as maintain the desired functionality features over the shelf life of the drug product.


Asunto(s)
Aceites de Silicona , Jeringas , Tungsteno , Anticuerpos Monoclonales
5.
J Pharm Sci ; 112(5): 1341-1344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796636

RESUMEN

Pulmonary delivery is the main route of administration for treatment of local lung diseases. Recently, the interest in delivery of proteins through the pulmonary route for treatment of lung diseases has significantly increased, especially after Covid-19 pandemic. The development of an inhalable protein combines the challenges of inhaled as well as biologic products since protein stability may be compromised during manufacture or delivery. For instance, spray drying is the most common technology for manufacture of inhalable biological particles, however, it imposes shear and thermal stresses which may cause protein unfolding and aggregation post drying. Therefore, protein aggregation should be evaluated for inhaled biologics as it could impact the safety and/or efficacy of the product. While there is extensive knowledge and regulatory guidance on acceptable limits of particles, which inherently include insoluble protein aggregates, in injectable proteins, there is no comparable knowledge for inhaled ones. Moreover, the poor correlation between in vitro setup for analytical testing and the in vivo lung environment limits the predictability of protein aggregation post inhalation. Thus, the purpose of this article is to highlight the major challenges facing the development of inhaled proteins compared to parenteral ones, and to share future thoughts to resolve them.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Agregado de Proteínas , Pandemias , Administración por Inhalación , Polvos , Tamaño de la Partícula , Inhaladores de Polvo Seco , Aerosoles y Gotitas Respiratorias
6.
Int J Pharm ; 619: 121694, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35331829

RESUMEN

While arginine hydrochloride (ArgHCl) has emerged as a potential stabilizer of protein drugs in liquid formulations, the purpose of this manuscript was to evaluate its stabilization potential in frozen solutions. The phase behavior of frozen ArgHCl solutions was investigated by differential scanning calorimetry and low temperature powder X-ray diffractometry. The aggregation of ß-galactosidase was evaluated following freeze-thaw cycling in ArgHCl solutions with and without mannitol. ArgHCl (5% w/v) was retained amorphous in frozen aqueous solutions and effectively inhibited protein aggregation even after 5 freeze-thaw cycles. Annealing frozen arginine solution (5% w/v) containing mannitol (10% w/v) induced mannitol crystallization which in turn facilitated crystallization of ArgHCl. The stabilizing effect of ArgHCl was completely lost in the presence of mannitol. Use of alternate arginine salts (aspartate, glutamate, and acetate) allowed selective crystallization of mannitol while arginine was retained amorphous and stabilized the protein.


Asunto(s)
Arginina , Sales (Química) , Rastreo Diferencial de Calorimetría , Liofilización , Congelación , Manitol/química , Proteínas
7.
J Pharm Sci ; 111(6): 1605-1613, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35318031

RESUMEN

High-throughput analysis of low-volume samples for detection of subvisible particles (SVPs) in biologic formulations remains an unmet need in the pharmaceutical industry. Some commonly used methods, such as light obscuration and microflow imaging, for SVP analysis are not high throughput and require significant amounts of sample volume, which may impede the collection of SVP data when therapeutic protein amounts are limited, typically during early stages of formulation development. We evaluated backgrounded membrane imaging (BMI) as an orthogonal method for SVP analysis and identified critical experimental parameters. Protein concentration, sample viscosity, and membrane coverage area had to be adjusted for each sample, especially those with high protein concentrations. A comparative analysis of particle counts obtained from BMI, light obscuration, and microflow imaging for five protein samples revealed that particle counts obtained with BMI were significantly higher than those acquired with the other two techniques for all particle size categories. BMI could not accurately count particles in protein-containing samples, as the image analysis software could not accurately trace the boundaries of translucent particles. Based on our results, BMI could be used as an orthogonal method for particle characterization when sample material is limited, such as during the early stages of formulation development or screening.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Proteínas , Tamaño de la Partícula , Programas Informáticos
8.
Eur J Pharm Biopharm ; 169: 256-267, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34732383

RESUMEN

Freeze-drying is an effective approach to improve the long-term stability of nanomedicines. Lyoprotectants are generally considered as requisite excipients to ensure that the quality of nanoparticles is maintained throughout the freeze-drying process. However, depending on the type of nanoparticles, the needs for lyoprotectants or the challenges they face during freeze-drying may be different. In this study, we compared and identified the impact of freeze-drying on key characteristics of three types of nanoparticles: solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNs), and liposomes. Sucrose, trehalose, and mannitol were added to nanoparticle suspensions before freeze-drying. The same conservative freeze-drying conditions with controlled ice nucleation at -8 °C were employed for all formulations. The collapse temperatures of nanoparticle formulations were found to be the same as those of the lyoprotectant added, except PN formulation. Likely the poly(vinyl alcohol) (PVA) in the formulation induced a higher collapse temperature and retardation of drying of PNs. Freeze-drying of both SLNs and liposomes without lyoprotectants increased particle size and polydispersity, which was resolved by adding amorphous disaccharides. Regardless of the addition of lyoprotectants, freeze-drying did not alter the size of PNs possibly due to the protection from PVA. However, lyoprotectants were still necessary to shorten the reconstitution time and reduce the residual moisture. In conclusion, different types of nanoparticles face distinct challenges for freeze-drying, and lyoprotectants differentially affect various stability and quality attributes of freeze-dried nanoparticles.


Asunto(s)
Liofilización , Liposomas/farmacología , Manitol/farmacología , Sacarosa/farmacología , Trehalosa/farmacología , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/farmacología , Liofilización/métodos , Liofilización/normas , Humanos , Nanopartículas , Nanotecnología , Tamaño de la Partícula , Mejoramiento de la Calidad , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/tendencias
9.
Mol Pharm ; 18(8): 3116-3124, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34232660

RESUMEN

N-terminal glutamate can cyclize to form pyroglutamate (pGlu) in pharmaceutically relevant peptides and proteins. The reaction occurs nonenzymatically during storage for monoclonal antibodies and shows a strong 'pH' dependence in solution, but the solid-state reaction has not been studied in detail. This work investigates the effect of 'pH' and buffer species on pGlu formation for a model peptide (EVQLVESGGGLVQPGGSLR) in lyophilized solids and in solution. The model peptide was formulated from 'pH' 4 to 'pH' 9 in citrate, citrate-phosphate, phosphate, and carbonate buffers and stored at 50 °C for at least 10 weeks. pGlu formation and loss of the parent peptide were monitored by reversed-phase high-performance liquid chromatography. The apparent 'pH' dependence of the reaction rate in the solid state differed markedly from that in solution. Interestingly, in the 'pH' range often used to formulate mAbs ('pH' 5.5-6), the rate of pGlu formation in the solid state was greater than that in solution. The results have implications for the rational design of stable formulations of peptides and proteins, and for the transition from solid to solution formulations during development.


Asunto(s)
Concentración de Iones de Hidrógeno , Péptidos/química , Ácido Pirrolidona Carboxílico/química , Anticuerpos Monoclonales/química , Tampones (Química) , Catálisis , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Ciclización , Estabilidad de Medicamentos , Liofilización , Cinética , Estabilidad Proteica , Soluciones
10.
Eur J Pharm Biopharm ; 165: 361-373, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33974974

RESUMEN

Lyophilized protein formulations containing highly concentrated proteins often have long and variable reconstitution times. Reconstitution time is dependent on a number of factors in a complex manner. Furthermore, factors influencing the reconstitution of partially crystalline cakes are reportedly different from those of amorphous cakes. The objectives of this work were to identify the key factors governing reconstitution and understand the mechanisms involved in reconstitution of both amorphous and partially crystalline cakes. Partial crystallinity in the final cake, larger pores and low "concentrated formulation viscosity" (i.e., viscosity near the surface of the dissolving cake) were identified as desirable characteristics for expediting reconstitution. Crystallinity and larger pores dramatically improved wettability and liquid penetration into partially crystalline cakes, ultimately resulting in well dispersed small pieces of partially dissolved cake. The smaller disintegrated cake pieces dissolved faster because of the increased surface area. The amorphous cakes exhibited poorer wettability than partially crystalline cakes. Moreover, the ability of the reconstitution fluid to penetrate the pores, and the resulting cake disintegration was much lower than that observed for partially crystalline cakes. In fact, for some of the amorphous cakes, the reconstitution fluid did not penetrate the cake at all. As a result, the undissolved intact cake or a large cake chunk floated on the reconstitution fluid amidst foam or bubbles generated during reconstitution. Dissolution of the floating cake appeared to proceed via gradual surface erosion where reconstitution time was found to be highly correlated with the viscosity near the surface of the dissolving cake solids. A higher viscosity prolonged reconstitution. Thus, both formulation and processing conditions can be tailored to achieve faster reconstitution. Including a crystallizable excipient proved to be beneficial. Incorporating an annealing step to facilitate crystallization of the crystallizable excipient and to promote larger pores was also found to be advantageous. A viscosity lowering excipient in the formulation could potentially be helpful but needs to be explored further.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Proteínas/química , Química Farmacéutica , Cristalización , Liofilización , Proteínas/uso terapéutico , Viscosidad , Humectabilidad
11.
J Pharm Sci ; 109(10): 2975-2985, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32534031

RESUMEN

Lyophilized protein formulations containing highly concentrated proteins often have long reconstitution times. The goal was to understand the role of formulation in mediating the reconstitution time. Formulation variables such as % total solids, protein concentration, protein-to-sugar ratio, different proteins and inclusion of a crystallizable excipient were investigated for their effect on cake properties influencing reconstitution namely, cake wettability, penetration of reconstitution fluid into the cake, cake disintegration and cake porous structure. Additionally, several measures of viscosity were also evaluated for their effect on reconstitution time. Reconstitution time was primarily influenced by the "concentrated formulation viscosity" with negligible contributions from % total solids and protein concentration. "Concentrated formulation viscosity" was sensitive to both protein-to-sugar ratio and the protein itself. Partial crystallinity in the final cake also expedited reconstitution. Wettability, liquid penetration into the cake, cake disintegration tendency and cake porous structure were found to be invariant for amorphous cakes and did not correlate with reconstitution time. However, these properties were sensitive to the presence of crystallinity and resulted in faster reconstitution at least of the partially crystalline cakes. "Concentrated formulation viscosity" strongly correlated with reconstitution times of amorphous cakes, providing insights on the steps involved in the reconstitution of amorphous formulations.


Asunto(s)
Excipientes , Proteínas , Liofilización , Porosidad , Humectabilidad
12.
Int J Pharm ; 568: 118512, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301464

RESUMEN

Deuterium incorporation in solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS) has been correlated with protein aggregation on storage in sugar-based solid matrices. Here, the effects of sucrose, arginine and histidine buffer on the rate of aggregation of a lyophilized monoclonal antibody (mAb) were assessed using design of experiments (DoE) and response surface methodology. Lyophilized formulations were characterized using ssHDX-MS and Fourier transform infrared spectroscopy (ssFTIR) to assess potential correlation with stability in solid state. The samples were subjected to storage stability at 5 °C and stressed stability at 40 °C/75% RH for 6 months, and the aggregation rate was measured using size exclusion chromatography (SEC). Different levels of arginine had no significant effect on deuterium uptake in ssHDX-MS, although stability studies showed that aggregation rate decreased with increasing arginine concentration. Similarly, when histidine buffer was replaced with phosphate buffer at the same pH and molarity, ssHDX-MS showed no differences in deuterium uptake, but storage stability studies showed a significant increase in aggregation rate. The results suggest that proteins can be stabilized in amorphous solids by ionic interactions which ssHDX-MS does not detect, an important indication of the limitations of the method.


Asunto(s)
Anticuerpos Monoclonales/química , Arginina/química , Inmunoglobulina G/química , Sacarosa/química , Deuterio/química , Medición de Intercambio de Deuterio , Histidina/química , Espectrometría de Masas , Fosfatos/química , Conformación Proteica , Estabilidad Proteica
13.
Pharm Res ; 36(5): 71, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30903389

RESUMEN

PURPOSE: Dynamic in-situ proton (1H) magnetic resonance imaging (MRI) and 1H T2-relaxometry experiments are described in an attempt to: (i) understand the physical processes, that occur during the reconstitution of lyophilized bovine serum albumin (BSA) and monoclonal antibody (mAb) proteins; and (ii) objectify the reconstitution time. METHODS: Rapid two-dimensional 1H MRI and diffusion weighted MRI were used to study the temporal changes in solids dissolution and characterise water mass transport characteristics. One-shot T2 relaxation time measurements were also acquired in an attempt to quantify the reconstitution time. Both MRI data and T2-relaxation data were compared to standard visual observations currently adopted by industry. The 1H images were further referenced to MRI calibration data to give quantitative values of protein concentration and, percentage of remaining undissolved solids. RESULTS: An algorithmic analysis of the 1H T2-relaxation data shows it is possible to classify the reconstitution event into three regimes (undissolved, transitional and dissolved). Moreover, a combined analysis of the 2D 1H MRI and 1H T2-relaxation data gives a unique time point that characterises the onset of a reconstituted protein solution within well-defined error bars. These values compared favourably with those from visual observations. Diffusion weighted MRI showed that low concentration BSA and mAb samples showed distinct liquid-liquid phase separation attributed to two liquid layers with significant density differences. CONCLUSIONS: T2 relaxation time distributions (whose interpretation is validated from the 2D 1H MR images) provides a quick and effective framework to build objective, quantitative descriptors of the reconstitution process that facilitate the interpretation of subjective visual observations currently adopted as the standard practice industry.


Asunto(s)
Anticuerpos Monoclonales/química , Imagen por Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Preparaciones Farmacéuticas/química , Albúmina Sérica Bovina/química , Estabilidad de Medicamentos , Liofilización , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Estabilidad Proteica , Solubilidad , Agua/química
14.
J Pharm Sci ; 108(4): 1423-1433, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30468830

RESUMEN

High-throughput lyophilization process was designed and developed for protein formulations using a single-step drying approach at a shelf temperature (Ts) of ≥40°C. Model proteins were evaluated at different protein concentrations in amorphous-only and amorphous-crystalline formulations. Single-step drying resulted in product temperature (Tp) above the collapse temperature (Tc) and a significant reduction (of at least 40%) in process time compared to the control cycle (wherein Tp

Asunto(s)
Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Cristalización , Estudios de Factibilidad , Liofilización
15.
J Pharm Sci ; 105(4): 1427-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27019959

RESUMEN

This study highlights the significance of the freezing step and the critical role it can play in modulating process performance and product quality during freeze-drying. For the model protein formulation evaluated, the mechanism of freezing had a significant impact on cake appearance, a potential critical product quality attribute for a lyophilized drug product. Contrary to common knowledge, a freezing step with annealing resulted in 20% increase in primary drying time compared to without annealing. In addition, annealing resulted in poor cake appearance with shrinkage, cracks, and formation of a distinct skin at the top surface of the cake. Finally, higher product resistance (7.5 cm(2).Torr.hr/g) was observed in the case of annealing compared to when annealing was not included (5 cm(2).Torr.hr/g), which explains the longer primary drying time due to reduced sublimation rates. An alternative freezing option using controlled ice nucleation resulted in reduced primary drying time (i.e., 30% reduction compared to annealing) and a more homogenous batch with elegant uniform (i.e., significantly improved) cake appearance. Here, a mechanistic understanding of the distinct differences in cake appearance as a function of freezing mechanism is proposed within the context of ice nucleation temperature, ice crystal growth, and presumed solute distribution within the frozen matrix.


Asunto(s)
Liofilización/métodos , Glicoproteínas/química , Cristalización , Congelación , Hielo/análisis , Transición de Fase , Porosidad
16.
J Pharm Sci ; 99(10): 4363-79, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20737639

RESUMEN

Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).


Asunto(s)
Liofilización , Preparaciones Farmacéuticas , Análisis Espectral/métodos
17.
J Pharm Sci ; 99(7): 3188-204, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20166199

RESUMEN

This study is aimed at characterizing and understanding different modes of heat and mass transfer in glass syringes to develop a robust freeze-drying process. Two different holder systems were used to freeze-dry in syringes: an aluminum (Al) block and a plexiglass holder. The syringe heat transfer coefficient was characterized by a sublimation test using pure water. Mannitol and sucrose (5% w/v) were also freeze-dried, as model systems, in both the assemblies. Dry layer resistance was determined from manometric temperature measurement (MTM) and product temperature was measured using thermocouples, and was also determined from MTM. Further, freeze-drying process was also designed using Smart freeze-dryer to assess its application for freeze-drying in novel container systems. Heat and mass transfer in syringes were compared against the traditional container system (i.e., glass tubing vial). In the Al block, the heat transfer was via three modes: contact conduction, gas conduction, and radiation with gas conduction being the dominant mode of heat transfer. In the plexiglass holder, the heat transfer was mostly via radiation; convection was not involved. Also, MTM/Smart freeze-drying did work reasonably well for freeze-drying in syringes. When compared to tubing vials, product temperature decreases and hence drying time increases in syringes.


Asunto(s)
Liofilización/métodos , Excipientes , Liofilización/instrumentación , Termodinámica
18.
AAPS PharmSciTech ; 11(1): 73-84, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20058107

RESUMEN

Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.


Asunto(s)
Liofilización/métodos , Desecación , Humedad , Hielo/análisis , Manitol/análisis , Manometría , Presión , Análisis Espectral , Sacarosa/análisis , Sacarosa/química , Temperatura , Agua/análisis
19.
AAPS PharmSciTech ; 10(4): 1406-11, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19937284

RESUMEN

A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.


Asunto(s)
Liofilización/métodos , Tecnología Farmacéutica , Hielo , Presión , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA