Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Microsyst Nanoeng ; 10: 42, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523654

RESUMEN

Silicon carbide (SiC) is recognized as an excellent material for microelectromechanical systems (MEMS), especially those operating in challenging environments, such as high temperature, high radiation, and corrosive environments. However, SiC bulk micromachining is still a challenge, which hinders the development of complex SiC MEMS. To address this problem, we present the use of a carbon nanotube (CNT) array coated with amorphous SiC (a-SiC) as an alternative composite material to enable high aspect ratio (HAR) surface micromachining. By using a prepatterned catalyst layer, a HAR CNT array can be grown as a structural template and then densified by uniformly filling the CNT bundle with LPCVD a-SiC. The electrical properties of the resulting SiC-CNT composite were characterized, and the results indicated that the electrical resistivity was dominated by the CNTs. To demonstrate the use of this composite in MEMS applications, a capacitive accelerometer was designed, fabricated, and measured. The fabrication results showed that the composite is fully compatible with the manufacturing of surface micromachining devices. The Young's modulus of the composite was extracted from the measured spring constant, and the results show a great improvement in the mechanical properties of the CNTs after coating with a-SiC. The accelerometer was electrically characterized, and its functionality was confirmed using a mechanical shaker.

3.
Microsyst Nanoeng ; 10: 27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384678

RESUMEN

Since the performance of micro-electro-mechanical system (MEMS)-based microphones is approaching fundamental physical, design, and material limits, it has become challenging to improve them. Several works have demonstrated graphene's suitability as a microphone diaphragm. The potential for achieving smaller, more sensitive, and scalable on-chip MEMS microphones is yet to be determined. To address large graphene sizes, graphene-polymer heterostructures have been proposed, but they compromise performance due to added polymer mass and stiffness. This work demonstrates the first wafer-scale integrated MEMS condenser microphones with diameters of 2R = 220-320 µm, thickness of 7 nm multi-layer graphene, that is suspended over a back-plate with a residual gap of 5 µm. The microphones are manufactured with MEMS compatible wafer-scale technologies without any transfer steps or polymer layers that are more prone to contaminate and wrinkle the graphene. Different designs, all electrically integrated are fabricated and characterized allowing us to study the effects of the introduction of a back-plate for capacitive read-out. The devices show high mechanical compliances Cm = 0.081-1.07 µmPa-1 (10-100 × higher than the silicon reported in the state-of-the-art diaphragms) and pull-in voltages in the range of 2-9.5 V. In addition, to validate the proof of concept, we have electrically characterized the graphene microphone when subjected to sound actuation. An estimated sensitivity of S1kHz = 24.3-321 mV Pa-1 for a Vbias = 1.5 V was determined, which is 1.9-25.5 × higher than of state-of-the-art microphone devices while having a ~9 × smaller area.

4.
Nanoscale ; 15(13): 6343-6352, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916300

RESUMEN

Microphones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications. We address performance parameters relevant for acoustic sensing, including mechanical sensitivity, limit of detection and nonlinear distortion, and discuss the trade-offs and limitations in the design of graphene microphones. We demonstrate superior mechanical sensitivities of the graphene membranes, reaching more than 2 orders of magnitude higher compliances than commercial MEMS devices, and report a limit of detection as low as 15 dBSPL, which is 10-15 dB lower than that featured by current MEMS microphones.

5.
Mater Horiz ; 9(6): 1727-1734, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35474130

RESUMEN

New fabrication approaches for mechanically flexible implants hold the key to advancing the applications of neuroengineering in fundamental neuroscience and clinic. By combining the high precision of thin film microfabrication with the versatility of additive manufacturing, we demonstrate a straight-forward approach for the prototyping of intracranial implants with electrode arrays and microfluidic channels. We show that the implant can modulate neuronal activity in the hippocampus through localized drug delivery, while simultaneously recording brain activity by its electrodes. Moreover, good implant stability and minimal tissue response are seen one-week post-implantation. Our work shows the potential of hybrid fabrication combining different manufacturing techniques in neurotechnology and paves the way for a new approach to the development of multimodal implants.


Asunto(s)
Fenómenos Electrofisiológicos , Neurociencias , Electrofisiología Cardíaca , Microtecnología , Prótesis e Implantes
6.
ACS Appl Mater Interfaces ; 14(18): 21705-21712, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35475352

RESUMEN

During the past decades micro-electromechanical microphones have largely taken over the market for portable devices, being produced in volumes of billions yearly. Because performance of current devices is near the physical limits, further miniaturization and improvement of microphones for mobile devices poses a major challenge that requires breakthrough device concepts, geometries, and materials. Graphene is an attractive material for enabling these breakthroughs due to its flexibility, strength, nanometer thinness, and high electrical conductivity. Here, we demonstrate that transfer-free 7 nm thick multilayer graphene (MLGr) membranes with diameters ranging from 85-155 to 300 µm can be used to detect sound and show a mechanical compliance up to 92 nm Pa-1, thus outperforming commercially available MEMS microphones of 950 µm with compliances around 3 nm Pa-1. The feasibility of realizing larger membranes with diameters of 300 µm and even higher compliances is shown, although these have lower yields. We present a process for locally growing graphene on a silicon wafer and realizing suspended membranes of patterned graphene across through-silicon holes by bulk micromachining and sacrificial layer etching, such that no transfer is required. This transfer-free method results in a 100% yield for membranes with diameters up to 155 µm on 132 fabricated drums. The device-to-device variations in the mechanical compliance in the audible range (20-20000 Hz) are significantly smaller than those in transferred membranes. With this work, we demonstrate a transfer-free method for realizing wafer-scale multilayer graphene membranes that is compatible with high-volume manufacturing. Thus, limitations of transfer-based methods for graphene microphone fabrication such as polymer contamination, crack formation, wrinkling, folding, delamination, and low-tension reproducibility are largely circumvented, setting a significant step on the route toward high-volume production of graphene microphones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA