Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
JIMD Rep ; 64(3): 223-232, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37151360

RESUMEN

Disorders of mitochondrial function are a collectively common group of genetic diseases in which deficits in core mitochondrial translation machinery, including aminoacyl tRNA synthetases, are key players. Biallelic variants in the CARS2 gene (NM_024537.4), which encodes the mitochondrial aminoacyl-tRNA synthetase for cysteine (CARS2, mt-aaRScys; MIM*612800), result in childhood onset epileptic encephalopathy and complex movement disorder with combined oxidative phosphorylation deficiency (MIM#616672). Prior to this report, eight unique pathogenic variants in the CARS2 gene had been reported in seven individuals. Here, we describe a male who presented in the third week of life with apnoea. He rapidly deteriorated with paroxysmal dystonic crises and apnoea resulting in death at 16 weeks. He had no evidence of seizure activity or multisystem disease and had normal brain imaging. Skeletal muscle biopsy revealed a combined disorder of oxidative phosphorylation. Whole-exome sequencing identified biallelic variants in the CARS2 gene: one novel (c.1478T>C, p.Phe493Ser), and one previously reported (c.655G>A, p.Ala219Thr; rs727505361). Northern blot analysis of RNA isolated from the patient's fibroblasts confirmed a clear defect in aminoacylation of the mitochondrial tRNA for cysteine (mt-tRNACys). To our knowledge, this is the earliest reported case of CARS2 deficiency with severe, early onset dystonia and apnoea, without epilepsy.

2.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36827974

RESUMEN

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Asunto(s)
Mitocondrias , Organogénesis , Animales , Femenino , Humanos , Ratones , Embarazo , Linaje de la Célula , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , Especificidad de Órganos , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
3.
Nat Commun ; 14(1): 1009, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823193

RESUMEN

Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.


Asunto(s)
Factores de Transcripción , Pez Cebra , Niño , Animales , Humanos , Factores de Transcripción/genética , ARN Mitocondrial , Pez Cebra/genética , Pez Cebra/metabolismo , ADN Mitocondrial/genética , Transcripción Genética , Mutación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
4.
Nat Biomed Eng ; 7(5): 692-703, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470976

RESUMEN

The development of curative treatments for mitochondrial diseases, which are often caused by mutations in mitochondrial DNA (mtDNA) that impair energy metabolism and other aspects of cellular homoeostasis, is hindered by an incomplete understanding of the underlying biology and a scarcity of cellular and animal models. Here we report the design and application of a library of double-stranded-DNA deaminase-derived cytosine base editors optimized for the precise ablation of every mtDNA protein-coding gene in the mouse mitochondrial genome. We used the library, which we named MitoKO, to produce near-homoplasmic knockout cells in vitro and to generate a mouse knockout with high heteroplasmy levels and no off-target edits. MitoKO should facilitate systematic and comprehensive investigations of mtDNA-related pathways and their impact on organismal homoeostasis, and aid the generation of clinically meaningful in vivo models of mtDNA dysfunction.


Asunto(s)
Edición Génica , Genoma Mitocondrial , Ratones , Animales , Genoma Mitocondrial/genética , ADN Mitocondrial/genética , Mutación , Biblioteca de Genes
5.
Elife ; 102021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34939929

RESUMEN

The Tricarboxylic Acid (TCA) Cycle is arguably the most critical metabolic cycle in physiology and exists as an essential interface coordinating cellular metabolism, bioenergetics, and redox homeostasis. Despite decades of research, a comprehensive investigation into the consequences of TCA cycle dysfunction remains elusive. Here, we targeted two TCA cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), and combined metabolomics, transcriptomics, and proteomics analyses to fully appraise the consequences of TCA cycle inhibition (TCAi) in murine kidney epithelial cells. Our comparative approach shows that TCAi elicits a convergent rewiring of redox and amino acid metabolism dependent on the activation of ATF4 and the integrated stress response (ISR). Furthermore, we also uncover a divergent metabolic response, whereby acute FHi, but not SDHi, can maintain asparagine levels via reductive carboxylation and maintenance of cytosolic aspartate synthesis. Our work highlights an important interplay between the TCA cycle, redox biology, and amino acid homeostasis.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Ciclo del Ácido Cítrico/fisiología , Fumarato Hidratasa/metabolismo , Succinato Deshidrogenasa/metabolismo , Aminoácidos/metabolismo , Animales , Células Cultivadas , Ciclo del Ácido Cítrico/genética , Riñón/metabolismo , Metaboloma , Ratones , Oxidación-Reducción , Interferencia de ARN
6.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774131

RESUMEN

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Asunto(s)
Metiltransferasas/metabolismo , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Anticodón , Proliferación Celular , Codón , Citoplasma , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/química , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Ribosomas/metabolismo , Regulación hacia Arriba
7.
Nucleic Acids Res ; 49(10): 5798-5812, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34037799

RESUMEN

Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Secuencia de Aminoácidos , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunohistoquímica , Espectrometría de Masas , Mitocondrias/enzimología , Mitocondrias/genética , Biosíntesis de Proteínas/genética , Alineación de Secuencia
8.
J Hand Surg Am ; 46(3): 248.e1-248.e9, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257054

RESUMEN

PURPOSE: To report the clinical and radiological outcomes after medial femoral trochlear (MFT) osteochondral graft for the salvage of proximal scaphoid fractures with a minimum 2-year follow-up. METHODS: A retrospective review was performed of patients with comminuted fractures of the proximal scaphoid treated by excision of the proximal pole and replacement with free vascularized MFT osteochondral graft. Demographic data, objective and radiographic measurements, and patient-reported outcome measures of the upper limb and knee were collected. Pain was assessed by completion of a visual analog scale (VAS). RESULTS: Between February 2014 and May 2015, 12 MFT osteochondral grafts were performed. Eight patients were available for follow-up at a mean of 34 months (range, 28-39 months). The mean range of wrist flexion was 31° (range, 15°-60°), extension was 34° (range, 5°-60°), radial deviation was 9° (range, 0°-20°), ulnar deviation was 28° (range, 10°-45°) and grip strength was 42 kg (range, 25-53 kg). The median wrist pain, as measured by VAS, was 0.7 (mean, 1.3; range, 0-6). The average follow-up scapholunate, radiolunate, and radioscaphoid angles were 58.9° (range, 44°-93°), 12.9° (range, 0°-30°), and 46.0° (range, 35°-63°), respectively. The mean Disabilities of the Arm, Shoulder, and Hand (DASH) score was 13.9 (range, 3-43) and Patient Rated Wrist Evaluation (PRWE) score was 22.4 (range, 2-68). The mean postoperative Oxford Knee Score was 42 (range, 14-48). One patient suffered notable knee pain at 37-month follow-up. One patient suffered notable pain on the radial side of the wrist and underwent scaphoid excision and 4-corner arthrodesis. CONCLUSIONS: Replacement of the fragmented proximal scaphoid by MFT graft is an alternative to other salvage options and most patients can expect pain relief and acceptable wrist motion. These results need to be balanced against the potential for donor-site morbidity. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic V.


Asunto(s)
Fracturas no Consolidadas , Hueso Escafoides , Fémur , Estudios de Seguimiento , Fuerza de la Mano , Humanos , Rango del Movimiento Articular , Estudios Retrospectivos , Hueso Escafoides/diagnóstico por imagen , Hueso Escafoides/cirugía , Articulación de la Muñeca
9.
RNA Biol ; 17(4): 451-462, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31948311

RESUMEN

RNA species play host to a plethora of post-transcriptional modifications which together make up the epitranscriptome. 5-methyluridine (m5U) is one of the most common modifications made to cellular RNA, where it is found almost ubiquitously in bacterial and eukaryotic cytosolic tRNAs at position 54. Here, we demonstrate that m5U54 in human mitochondrial tRNAs is catalysed by the nuclear-encoded enzyme TRMT2B, and that its repertoire of substrates is expanded to ribosomal RNAs, catalysing m5U429 in 12S rRNA. We show that TRMT2B is not essential for viability in human cells and that knocking-out the gene shows no obvious phenotype with regards to RNA stability, mitochondrial translation, or cellular growth.


Asunto(s)
Mitocondrias/enzimología , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Proliferación Celular , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Metilación , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación Molecular , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN de Transferencia/química , Especificidad por Sustrato , Timina/metabolismo , ARNt Metiltransferasas/genética
10.
Nucleic Acids Res ; 47(19): 10267-10281, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31665743

RESUMEN

Post-transcriptional RNA modifications, the epitranscriptome, play important roles in modulating the functions of RNA species. Modifications of rRNA are key for ribosome production and function. Identification and characterization of enzymes involved in epitranscriptome shaping is instrumental for the elucidation of the functional roles of specific RNA modifications. Ten modified sites have been thus far identified in the mammalian mitochondrial rRNA. Enzymes responsible for two of these modifications have not been characterized. Here, we identify METTL15, show that it is the main N4-methylcytidine (m4C) methyltransferase in human cells and demonstrate that it is responsible for the methylation of position C839 in mitochondrial 12S rRNA. We show that the lack of METTL15 results in a reduction of the mitochondrial de novo protein synthesis and decreased steady-state levels of protein components of the oxidative phosphorylation system. Without functional METTL15, the assembly of the mitochondrial ribosome is decreased, with the late assembly components being unable to be incorporated efficiently into the small subunit. We speculate that m4C839 is involved in the stabilization of 12S rRNA folding, therefore facilitating the assembly of the mitochondrial small ribosomal subunits. Taken together our data show that METTL15 is a novel protein necessary for efficient translation in human mitochondria.


Asunto(s)
Metiltransferasas/genética , Mitocondrias/genética , Ribosomas Mitocondriales/química , ARN Ribosómico/genética , Citidina/genética , Humanos , Metilación , Mitocondrias/química , Fosforilación Oxidativa , Biosíntesis de Proteínas/genética , Pliegue del ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/química
11.
Nucleic Acids Res ; 47(16): 8720-8733, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31276587

RESUMEN

Expression of human mitochondrial DNA is indispensable for proper function of the oxidative phosphorylation machinery. The mitochondrial genome encodes 22 tRNAs, 2 rRNAs and 11 mRNAs and their post-transcriptional modification constitutes one of the key regulatory steps during mitochondrial gene expression. Cytosine-5 methylation (m5C) has been detected in mitochondrial transcriptome, however its biogenesis has not been investigated in details. Mammalian NOP2/Sun RNA Methyltransferase Family Member 2 (NSUN2) has been characterized as an RNA methyltransferase introducing m5C in nuclear-encoded tRNAs, mRNAs and microRNAs and associated with cell proliferation and differentiation, with pathogenic variants in NSUN2 being linked to neurodevelopmental disorders. Here we employ spatially restricted proximity labelling and immunodetection to demonstrate that NSUN2 is imported into the matrix of mammalian mitochondria. Using three genetic models for NSUN2 inactivation-knockout mice, patient-derived fibroblasts and CRISPR/Cas9 knockout in human cells-we show that NSUN2 is necessary for the generation of m5C at positions 48, 49 and 50 of several mammalian mitochondrial tRNAs. Finally, we show that inactivation of NSUN2 does not have a profound effect on mitochondrial tRNA stability and oxidative phosphorylation in differentiated cells. We discuss the importance of the newly discovered function of NSUN2 in the context of human disease.


Asunto(s)
5-Metilcitosina/metabolismo , Eccema/genética , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , Metiltransferasas/genética , Microcefalia/genética , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/genética , ARN de Transferencia/genética , Animales , Sistemas CRISPR-Cas , Eccema/metabolismo , Eccema/patología , Facies , Fibroblastos/metabolismo , Fibroblastos/patología , Edición Génica , Técnicas de Inactivación de Genes , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Células HEK293 , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Metilación , Metiltransferasas/deficiencia , Ratones , Ratones Noqueados , Microcefalia/metabolismo , Microcefalia/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Fosforilación Oxidativa , Cultivo Primario de Células , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , ARN de Transferencia/metabolismo
12.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31045291

RESUMEN

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Genes Mitocondriales , Predisposición Genética a la Enfermedad , Mutación , Proteínas de Neoplasias/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Alelos , Sustitución de Aminoácidos , Biomarcadores , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/terapia , Estudios de Cohortes , Activación Enzimática , Femenino , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Cinética , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenotipo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 429-446, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529456

RESUMEN

Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.


Asunto(s)
ADN Mitocondrial/genética , Epigénesis Genética , Procesamiento Postranscripcional del ARN , Transcriptoma , Animales , ADN Mitocondrial/metabolismo , Humanos
14.
Am J Hum Genet ; 103(6): 1045-1052, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526862

RESUMEN

We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.


Asunto(s)
Agresión/fisiología , Enanismo/genética , Variación Genética/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Microcefalia/genética , Adolescente , Animales , Niño , Drosophila melanogaster/genética , Exones/genética , Femenino , Técnicas de Inactivación de Genes/métodos , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , ARN Mensajero/genética , ARN de Transferencia/genética
15.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283131

RESUMEN

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Asunto(s)
Cardiomiopatías/enzimología , Cardiomiopatías/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación/genética , Transferasas de Grupos Nitrogenados/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Recién Nacido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocardio/patología , Miocardio/ultraestructura , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Fosforilación Oxidativa , Linaje , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250142

RESUMEN

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Asunto(s)
Edición Génica , Mitocondrias Cardíacas/genética , Enfermedades Mitocondriales/genética , Nucleasas con Dedos de Zinc/genética , Animales , ADN Mitocondrial/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias Cardíacas/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/terapia , Mutación/genética , Pronóstico , ARN de Transferencia/genética , Nucleasas con Dedos de Zinc/uso terapéutico
17.
Mol Genet Metab ; 122(4): 172-181, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29126765

RESUMEN

Mutations in FARS2 are known to cause dysfunction of mitochondrial translation due to deficient aminoacylation of the mitochondrial phenylalanine tRNA. Here, we report three novel mutations in FARS2 found in two patients in a compound heterozygous state. The missense mutation c.1082C>T (p.Pro361Leu) was detected in both patients. The mutations c.461C>T (p.Ala154Val) and c.521_523delTGG (p.Val174del) were each detected in one patient. We report abnormal in vitro aminoacylation assays as a functional validation of the molecular genetic findings. Based on the phenotypic data of previously reported subjects and the two subjects reported here, we conclude that FARS2 deficiency can be associated with two phenotypes: (i) an epileptic phenotype, and (ii) a spastic paraplegia phenotype.


Asunto(s)
Epilepsia/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Fenotipo , Fenilalanina-ARNt Ligasa/deficiencia , Fenilalanina-ARNt Ligasa/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Encéfalo/diagnóstico por imagen , Células Cultivadas , Exoma , Femenino , Fibroblastos/metabolismo , Heterocigoto , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mitocondrias/enzimología , Mitocondrias/metabolismo , Músculo Esquelético/patología , Mutación Missense/genética , Consumo de Oxígeno , ARN de Transferencia/metabolismo , Análisis de Secuencia de ADN
18.
Elife ; 62017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28745585

RESUMEN

Human mitochondria contain a genome (mtDNA) that encodes essential subunits of the oxidative phosphorylation system. Expression of mtDNA entails multi-step maturation of precursor RNA. In other systems, the RNA life cycle involves surveillance mechanisms, however, the details of RNA quality control have not been extensively characterised in human mitochondria. Using a mitochondrial ribosome profiling and mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) assay, we identify the poly(A)-specific exoribonuclease PDE12 as a major factor for the quality control of mitochondrial non-coding RNAs. The lack of PDE12 results in a spurious polyadenylation of the 3' ends of the mitochondrial (mt-) rRNA and mt-tRNA. While the aberrant adenylation of 16S mt-rRNA did not affect the integrity of the mitoribosome, spurious poly(A) additions to mt-tRNA led to reduced levels of aminoacylated pool of certain mt-tRNAs and mitoribosome stalling at the corresponding codons. Therefore, our data uncover a new, deadenylation-dependent mtRNA maturation pathway in human mitochondria.


Asunto(s)
Mitocondrias/genética , Poli A/genética , Poliadenilación , ARN Mensajero/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , ARN/genética , Exorribonucleasas/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo
19.
Biomolecules ; 7(1)2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257121

RESUMEN

Human mitochondria contain their own genome, which uses an unconventional genetic code. In addition to the standard AUG methionine codon, the single mitochondrial tRNA Methionine (mt-tRNAMet) also recognises AUA during translation initiation and elongation. Post-transcriptional modifications of tRNAs are important for structure, stability, correct folding and aminoacylation as well as decoding. The unique 5-formylcytosine (f5C) modification of position 34 in mt-tRNAMet has been long postulated to be crucial for decoding of unconventional methionine codons and efficient mitochondrial translation. However, the enzymes responsible for the formation of mitochondrial f5C have been identified only recently. The first step of the f5C pathway consists of methylation of cytosine by NSUN3. This is followed by further oxidation by ABH1. Here, we review the role of f5C, the latest breakthroughs in our understanding of the biogenesis of this unique mitochondrial tRNA modification and its involvement in human disease.


Asunto(s)
Citosina/análogos & derivados , Código Genético , Mitocondrias/genética , ARN de Transferencia de Metionina/metabolismo , Citosina/metabolismo , Enfermedad , Humanos , Modelos Biológicos
20.
Trends Biochem Sci ; 42(8): 625-639, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28285835

RESUMEN

Perturbation of mitochondrial DNA (mtDNA) gene expression can lead to human pathologies. Therefore, a greater appreciation of the basic mechanisms of mitochondrial gene expression is desirable to understand the pathophysiology of associated disorders. Although the purpose of the mitochondrial gene expression machinery is to provide only 13 proteins of the oxidative phosphorylation (OxPhos) system, recent studies have revealed its remarkable and unexpected complexity. We review here the latest breakthroughs in our understanding of the post-transcriptional processes of mitochondrial gene expression, focusing on advances in analyzing the mitochondrial epitranscriptome, the role of mitochondrial RNA granules (MRGs), the benefits of recently obtained structures of the mitochondrial ribosome, and the coordination of mitochondrial and cytosolic translation to orchestrate the biogenesis of OxPhos complexes.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes Mitocondriales/genética , Mitocondrias/genética , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Animales , Humanos , Mitocondrias/metabolismo , Ribosomas Mitocondriales/química , Procesamiento Postranscripcional del ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA