Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(6): e1010804, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384599

RESUMEN

Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.


Asunto(s)
ARN Viral , Retroelementos , Masculino , Femenino , Animales , Retroelementos/genética , Caenorhabditis elegans/genética , Transporte Activo de Núcleo Celular/genética , Semen , Genómica , Citocinas , ARN Mensajero
2.
PLoS Genet ; 17(6): e1009602, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133414

RESUMEN

Fat stored in the form of lipid droplets has long been considered a defining characteristic of cytoplasm. However, recent studies have shown that nuclear lipid droplets occur in multiple cells and tissues, including in human patients with fatty liver disease. The function(s) of stored fat in the nucleus has not been determined, and it is possible that nuclear fat is beneficial in some situations. Conversely, nuclear lipid droplets might instead be deleterious by disrupting nuclear organization or triggering aggregation of hydrophobic proteins. We show here that nuclear lipid droplets occur normally in C. elegans intestinal cells and germ cells, but appear to be associated with damage only in the intestine. Lipid droplets in intestinal nuclei can be associated with novel bundles of microfilaments (nuclear actin) and membrane tubules that might have roles in damage repair. To increase the normal, low frequency of nuclear lipid droplets in wild-type animals, we used a forward genetic screen to isolate mutants with abnormally large or abundant nuclear lipid droplets. Genetic analysis and cloning of three such mutants showed that the genes encode the lipid regulator SEIP-1/seipin, the inner nuclear membrane protein NEMP-1/Nemp1/TMEM194A, and a component of COPI vesicles called COPA-1/α-COP. We present several lines of evidence that the nuclear lipid droplet phenotype of copa-1 mutants results from a defect in retrieving mislocalized membrane proteins that normally reside in the endoplasmic reticulum. The seip-1 mutant causes most germ cells to have nuclear lipid droplets, the largest of which occupy more than a third of the nuclear volume. Nevertheless, the nuclear lipid droplets do not trigger apoptosis, and the germ cells differentiate into gametes that produce viable, healthy progeny. Thus, our results suggest that nuclear lipid droplets are detrimental to intestinal nuclei, but have no obvious deleterious effect on germ nuclei.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Proteína Coatómero/genética , Mucosa Intestinal/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/ultraestructura , Proteína Coatómero/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Mucosa Intestinal/patología , Intestinos/patología , Gotas Lipídicas/ultraestructura , Lípidos/química , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
3.
PLoS Genet ; 14(7): e1007417, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30024879

RESUMEN

Cell death plays a major role during C. elegans oogenesis, where over half of the oogenic germ cells die in a process termed physiological apoptosis. How germ cells are selected for physiological apoptosis, or instead become oocytes, is not understood. Most oocytes produce viable embryos when apoptosis is blocked, suggesting that physiological apoptosis does not function to cull defective germ cells. Instead, cells targeted for apoptosis may function as nurse cells; the germline is syncytial, and all germ cells appear to contribute cytoplasm to developing oocytes. C. elegans has been a leading model for the genetics and molecular biology of apoptosis and phagocytosis, but comparatively few studies have examined the cell biology of apoptotic cells. We used live imaging to identify and examine pre-apoptotic germ cells in the adult gonad. After initiating apoptosis, germ cells selectively export their mitochondria into the shared pool of syncytial cytoplasm; this transport appears to use the microtubule motor kinesin. The apoptotic cells then shrink as they expel most of their remaining cytoplasm, and close off from the syncytium. Shortly thereafter the apoptotic cells restructure their microtubule and actin cytoskeletons, possibly to maintain cell integrity; the microtubules form a novel, cortical array of stabilized microtubules, and actin and cofilin organize into giant cofilin-actin rods. We discovered that some apoptotic germ cells are binucleate; the binucleate germ cells can develop into binucleate oocytes in apoptosis-defective strains, and appear capable of producing triploid offspring. Our results suggest that the nuclear layer of the germline syncytium becomes folded during mitosis and growth, and that binucleate cells arise as the layer unfolds or everts; all of the binucleate cells are subsequently removed by apoptosis. These results show that physiological apoptosis targets at least two distinct populations of germ cells, and that the apoptosis machinery efficiently recognizes cells with two nuclei.


Asunto(s)
Apoptosis/fisiología , Caenorhabditis elegans/fisiología , Núcleo Celular/patología , Células Germinativas/fisiología , Microtúbulos/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Caspasas/genética , Núcleo Celular/fisiología , Citoplasma/fisiología , Femenino , Masculino , Oocitos/fisiología , Oogénesis/fisiología , Ovario/citología , Ovario/fisiología
4.
Elife ; 62017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28092264

RESUMEN

The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here, we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. Intriguingly, our genetic data suggest that SAS-7 is required for daughter centrioles to become competent for duplication, and for mother centrioles to maintain this competence. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Biogénesis de Organelos , Animales , Caenorhabditis elegans/genética , Humanos
5.
PLoS Genet ; 12(5): e1006077, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27192049

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1005950.].

6.
PLoS Genet ; 12(4): e1005950, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27035721

RESUMEN

Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.


Asunto(s)
Axones , Caenorhabditis elegans/embriología , Intestinos/embriología , Morfogénesis/genética , Animales , Polaridad Celular , Intestinos/anatomía & histología , Intestinos/citología
7.
PLoS Genet ; 9(9): e1003772, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039608

RESUMEN

Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes-the pharynx, valve, and intestine-and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes.


Asunto(s)
Comunicación Celular/genética , Diferenciación Celular/genética , Polaridad Celular/genética , Organogénesis , Animales , Tipificación del Cuerpo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Células Epiteliales/citología , Tracto Gastrointestinal/crecimiento & desarrollo , Tracto Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/crecimiento & desarrollo , Laminina/farmacología , Faringe/crecimiento & desarrollo , Faringe/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción/genética
8.
Development ; 139(11): 2050-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22535412

RESUMEN

The development of many animal organs involves a mesenchymal to epithelial transition, in which cells develop and coordinate polarity through largely unknown mechanisms. The C. elegans pharynx, which is an epithelial tube in which cells polarize around a central lumen, provides a simple system with which to understand the coordination of epithelial polarity. We show that cell fate regulators cause pharyngeal precursor cells to group into a bilaterally symmetric, rectangular array of cells called the double plate. The double plate cells polarize with apical localization of the PAR-3 protein complex, then undergo apical constriction to form a cylindrical cyst. We show that laminin, but not other basement membrane components, orients the polarity of the double plate cells. Our results provide in vivo evidence that laminin has an early role in cell polarity that can be distinguished from its later role in basement membrane integrity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Polaridad Celular/fisiología , Células Epiteliales/fisiología , Laminina/fisiología , Faringe/embriología , Animales , Técnica del Anticuerpo Fluorescente , Laminina/metabolismo , Microscopía Confocal , Faringe/citología , Proteínas Serina-Treonina Quinasas
9.
PLoS Pathog ; 8(3): e1002591, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479180

RESUMEN

Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/virología , Retrovirus Endógenos/genética , Regulación Viral de la Expresión Génica , Células Germinativas/virología , ADN Polimerasa Dirigida por ARN/genética , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Cápside/enzimología , Cápside/ultraestructura , Cápside/virología , ADN de Helmintos/genética , Retrovirus Endógenos/ultraestructura , Células Germinativas/enzimología , Células Germinativas/ultraestructura , Temperatura
10.
Curr Biol ; 22(7): 575-82, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22425160

RESUMEN

BACKGROUND: The centrosome is the major microtubule organizing center (MTOC) in dividing cells and in many postmitotic, differentiated cells. In other cell types, however, MTOC function is reassigned from the centrosome to noncentrosomal sites. Here, we analyze how MTOC function is reassigned to the apical membrane of C. elegans intestinal cells. RESULTS: After the terminal intestinal cell division, the centrosomes and nuclei move near the future apical membranes, and the postmitotic centrosomes lose all, or nearly all, of their associated microtubules. We show that microtubule-nucleating proteins such as γ-tubulin and CeGrip-1 that are centrosome components in dividing cells become localized to the apical membrane, which becomes highly enriched in microtubules. Our results suggest that centrosomes are critical to specify the apical membrane as the new MTOC. First, γ-tubulin appears to redistribute directly from the migrating centrosome onto the lateral then apical membrane. Second, γ-tubulin fails to accumulate apically in wild-type cells following laser ablation of the centrosome. We show that centrosomes localize apically by first moving toward lateral foci of the conserved polarity proteins PAR-3 and PAR-6 and then move together with these foci toward the future apical surface. Embryos lacking PAR-3 fail to localize their centrosomes apically and have aberrant localization of γ-tubulin and CeGrip-1. CONCLUSIONS: These data suggest that PAR proteins contribute to apical polarity in part by determining centrosome position and that the reassignment of MTOC function from centrosomes to the apical membrane is associated with a physical hand-off of nucleators of microtubule assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Centrómero/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/embriología , Rayos Láser , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Mutación , Proteínas Serina-Treonina Quinasas , Tubulina (Proteína)/metabolismo
11.
Development ; 137(8): 1305-14, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20223759

RESUMEN

Germline-specific granules of unknown function are found in a wide variety of organisms, including C. elegans, where they are called P granules. P granules are cytoplasmic bodies in oocytes and early embryos. Throughout most of the C. elegans life cycle, however, P granules are associated with clusters of nuclear pore complexes (NPCs) on germ cell nuclei. We show that perinuclear P granules differ from cytoplasmic P granules in many respects, including structure, stability and response to metabolic changes. Our results suggest that nuclear-associated P granules provide a perinuclear compartment where newly exported mRNAs are collected prior to their release to the general cytoplasm. First, we show that mRNA export factors are highly enriched at the NPCs associated with P granules. Second, we discovered that the expression of high-copy transgenes could be induced in a subset of germ cells, and used this system to demonstrate that nascent mRNA traffics directly to P granules. P granules appear to sequester large amounts of mRNA in quiescent germ cells, presumably preventing translation of that mRNA. However, we did not find evidence that P granules normally sequester aberrant mRNAs, or mRNAs targeted for destruction by the RNAi pathway.


Asunto(s)
Caenorhabditis elegans/fisiología , ARN Mensajero/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Citoplasma/fisiología , ARN Helicasas DEAD-box/genética , Trastornos del Desarrollo Sexual/genética , Células Germinativas/citología , Células Germinativas/fisiología , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Oocitos/citología , Oocitos/fisiología , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
12.
Development ; 135(22): 3665-75, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18842813

RESUMEN

Anteroposterior polarity in early C. elegans embryos is required for the specification of somatic and germline lineages, and is initiated by a sperm-induced reorganization of the cortical cytoskeleton and PAR polarity proteins. Through mechanisms that are not understood, the kinases PAR-1 and PAR-4, and other PAR proteins cause the cytoplasmic zinc finger protein MEX-5 to accumulate asymmetrically in the anterior half of the one-cell embryo. We show that MEX-5 asymmetry requires neither vectorial transport to the anterior, nor protein degradation in the posterior. MEX-5 has a restricted mobility before fertilization and in the anterior of one-cell embryos. However, MEX-5 mobility in the posterior increases as asymmetry develops, presumably allowing accumulation in the anterior. The MEX-5 zinc fingers and a small, C-terminal domain are essential for asymmetry; the zinc fingers restrict MEX-5 mobility, and the C-terminal domain is required for the increase in posterior mobility. We show that a crucial residue in the C-terminus, Ser 458, is phosphorylated in vivo. PAR-1 and PAR-4 kinase activities are required for the phosphorylation of S458, providing a link between PAR polarity proteins and the cytoplasmic asymmetry of MEX-5.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Oocitos , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Dedos de Zinc
13.
Dev Cell ; 14(4): 559-69, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18410731

RESUMEN

During organogenesis of the C. elegans digestive system, epithelial cells within a cyst-like primordium develop diverse shapes through largely unknown mechanisms. We here analyze two adjacent, dorsal epithelial cells, called pm8 and vpi1, that remodel their shapes and apical junctions to become donut-shaped, or toroidal, single-cell tubes. pm8 and vpi1 delaminate from the dorsal cyst epithelium and migrate ventrally, across the midline of the cyst, on a transient tract of laminin. pm8 appears to encircle the midline by wrapping around finger-like projections from neighboring cells. Finally, pm8 and vpi1 self-fuse to become toroids by expressing AFF-1 and EFF-1, two fusogens that are each sufficient to promote crossfusion between other cell types. Notch signaling in pm8 induces AFF-1 expression, while simultaneously repressing EFF-1 expression; vpi1 expresses EFF-1 independent of Notch. Thus, the adjacent pm8 and vpi1 cells express different fusogens, allowing them to self-fuse into separate, single-cell tubes while avoiding crossfusion.


Asunto(s)
Tipificación del Cuerpo , Caenorhabditis elegans , Tracto Gastrointestinal , Morfogénesis/fisiología , Receptores Notch/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Fusión Celular , Movimiento Celular , Polaridad Celular , Forma de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Humanos , Laminina/metabolismo , Receptores Notch/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Transgenes
14.
Development ; 134(24): 4459-68, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18003741

RESUMEN

The Notch signaling pathway is involved in a wide variety of cell-fate decisions during development. The diverse behavior of Notch-activated cells is thought to depend on tissue- or cell-type-specific transcription factors, yet the identities of such factors and the mechanism of cooperation with the Notch pathway are largely unknown. We identify here an enhancer in the promoter of ref-1, a C. elegans Notch target, which promotes Notch-dependent expression in mesodermal and endodermal cells. The enhancer contains predicted binding sites for the Notch transcriptional effector LAG-1/CSL that are essential for expression, a non-CSL site required for mesodermal expression, and four predicted binding sites for GATA transcription factors that are required for endodermal expression. We show that endodermal expression involves the GATA transcription factor ELT-2, and that ELT-2 can bind LAG-1/CSL in vitro. In many types of Notch-activated embryonic cells, ectopic ELT-2 is sufficient to drive expression of reporters containing the enhancer.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Factores de Transcripción GATA/metabolismo , Receptores Notch/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sondas de ADN/genética , ADN de Helmintos/genética , Endodermo/embriología , Endodermo/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción GATA/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Proteínas Fluorescentes Verdes/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Receptores Notch/genética , Proteínas Recombinantes/genética , Homología de Secuencia de Ácido Nucleico , Transducción de Señal
15.
Development ; 134(12): 2227-36, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17507392

RESUMEN

Oocytes in the C. elegans gonad enlarge rapidly. During the stage of enlargement, they are transcriptionally quiescent, and it is not understood how they acquire large quantities of materials such as mRNA and protein. Enlarging oocytes are connected via cytoplasmic bridges to a large, younger population of transcriptionally active germ cells at various stages of mitosis and meiosis. We show here that there is a general streaming of gonad cytoplasm towards and into the enlarging oocytes, originating primarily from pachytene-stage germ cells. Because previous studies suggested that most or all of the pachytene germ cells have the potential to differentiate into oocytes, the pachytene cells appear to function transiently as nurse cells. Somatic gonadal cells that surround the germ cells do not appear essential for streaming. Instead, materials appear to be pulled into oocytes by forces generated either in, or adjacent to, the enlarging oocytes themselves. Streaming appears to be driven by the actomyosin cytoskeleton, although we show that populations of both microfilaments and microtubules are oriented in the direction of flow. Our study shows that oocyte enlargement in C. elegans differs significantly from that in Drosophila, where a small number of specialized nurse cells expel their contents into the enlarging oocyte.


Asunto(s)
Actinas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Corriente Citoplasmática/fisiología , Oocitos , Oogénesis/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Femenino , Modelos Biológicos , Oocitos/citología , Oocitos/fisiología , Interferencia de ARN
16.
PLoS Genet ; 2(6): e97, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16846252

RESUMEN

Germline chromatin undergoes dramatic remodeling events involving histone variants during the life cycle of an organism. A universal histone variant, H3.3, is incorporated at sites of active transcription throughout the cell cycle. The presence of H3.3 in chromatin indicates histone turnover, which is the energy-dependent removal of preexisting histones and replacement with new histones. H3.3 is also incorporated during decondensation of the Drosophila sperm pronucleus, indicating a direct role in chromatin remodeling upon fertilization. Here we present a system to monitor histone turnover and chromatin remodeling during Caenorhabditis elegans development by following the developmental dynamics of H3.3. We generated worm strains expressing green fluorescent protein- or yellow fluorescent protein-fused histone H3.3 proteins, HIS-71 and HIS-72. We found that H3.3 is retained in mature sperm chromatin, raising the possibility that it transmits epigenetic information via the male germline. Upon fertilization, maternal H3.3 enters both male and female pronuclei and is incorporated into paternal chromatin, apparently before the onset of embryonic transcription, suggesting that H3.3 can be incorporated independent of transcription. In early embryos, H3.3 becomes specifically depleted from primordial germ cells. Strikingly, the X chromosome becomes deficient in H3.3 during gametogenesis, indicating a low level of histone turnover. These results raise the possibility that the asymmetry in histone turnover between the X chromosome and autosomes is established during gametogenesis. H3.3 patterns are similar to patterns of H3K4 methylation in the primordial germ cells and on the X chromosome during gametogenesis, suggesting that histone turnover and modification are coupled processes. Our demonstration of dynamic H3.3 incorporation in nondividing cells provides a mechanistic basis for chromatin changes during germ cell development.


Asunto(s)
Caenorhabditis elegans/fisiología , Células Germinativas/metabolismo , Histonas/metabolismo , Animales , Caenorhabditis elegans/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Femenino , Gametogénesis , Proteínas Fluorescentes Verdes , Masculino , Metilación , Cromosoma X
17.
Science ; 311(5762): 851-3, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16469927

RESUMEN

The molecular mechanisms that maintain totipotency of the germline are not well understood. Here, we show that two conserved translational regulators, MEX-3 and GLD-1, are essential for maintaining totipotency in the Caenorhabditis elegans germline. In mex-3 gld-1 mutants, germ cells transdifferentiate into various somatic cell types such as muscles or neurons. Our findings implicate RNA regulation in the maintenance of totipotency, suggest that multiple mechanisms maintain totipotency at different stages of germline development, and establish a genetically tractable model for studying the development of teratomas.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Células Germinativas/citología , Células Germinativas/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Gránulos Citoplasmáticos/ultraestructura , Femenino , Células Germinativas/química , Masculino , Meiosis , Mitosis , Células Musculares/citología , Mutación , Neuronas/citología , Fase Paquiteno , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Teratoma
18.
Dev Biol ; 284(2): 509-22, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15979606

RESUMEN

Specification of the endoderm precursor, the E cell, in Caenorhabditis elegans requires a genomic region called the Endoderm Determining Region (EDR). We showed previously that end-1, a gene within the EDR encoding a GATA-type transcription factor, restores endoderm specification to embryos deleted for the EDR and obtained evidence for genetic redundancy in this process. Here, we report molecular identification of end-3, a nearby paralog of end-1 in the EDR, and show that end-1 and end-3 together define the endoderm-specifying properties of the EDR. Both genes are expressed in the early E lineage and each is individually sufficient to specify endodermal fate in the E cell and in non-endodermal precursors when ectopically expressed. The loss of function of both end genes, but not either one alone, eliminates endoderm in nearly all embryos and results in conversion of E into a C-like mesectodermal precursor, similar to deletions of the EDR. While two putative end-1 null mutants display no overt phenotype, a missense mutation that alters a residue in the zinc finger domain of END-3 results in misspecification of E in approximately 9% of mutant embryos. We report that the EDR in C. briggsae, which is estimated to have diverged from C. elegans approximately 50--120 myr ago, contains three end-like genes, resulting from both the ancient duplication that produced end-1 and end-3 in C. elegans, and a more recent duplication of end-3 in the lineage specific to C. briggsae. Transgenes containing the C. briggsae end homologs show E lineage-specific expression and function in C. elegans, demonstrating their functional conservation. Moreover, RNAi experiments indicate that the C. briggsae end genes also function redundantly to specify endoderm. We propose that duplicated end genes have been maintained over long periods of evolution, owing in part to their synergistic function.


Asunto(s)
Caenorhabditis elegans/genética , Endodermo/metabolismo , Duplicación de Gen , Proteínas del Helminto/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Caenorhabditis/genética , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Secuencia Conservada , Embrión no Mamífero , Endodermo/citología , Evolución Molecular , Factores de Transcripción GATA , Genes de Helminto , Proteínas del Helminto/química , Proteínas del Helminto/genética , Hibridación in Situ , Microscopía por Video , Modelos Biológicos , Datos de Secuencia Molecular , Mutación Missense , Estructura Terciaria de Proteína , Interferencia de ARN , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
19.
Dev Cell ; 8(6): 867-79, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15935776

RESUMEN

Much of the patterning of early C. elegans embryos involves a series of Notch interactions that occur in rapid succession and have distinct outcomes; however, none of the targets for these interactions have been identified. We show that the REF-1 family of bHLH transcription factors is a major target of Notch signaling in all these interactions and that most examples of Notch-mediated transcriptional repression can be attributed to REF-1 activities. The REF-1 family is expressed and has similar functions in both Notch-dependent and Notch-independent pathways, and this dual mode of deployment is used repeatedly to pattern the embryo. REF-1 proteins are unusual in that they contain two different bHLH domains and lack the distinguishing characteristics of Hairy/Enhancer of Split (HES) bHLH proteins that are Notch targets in other systems. Our results show that the highly divergent REF-1 proteins are nonetheless HES-like bHLH effectors of Notch signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Drosophila , Proteínas de Drosophila , Embrión no Mamífero , Técnica del Anticuerpo Fluorescente/métodos , Modelos Biológicos , Datos de Secuencia Molecular , Morfogénesis/fisiología , Mutagénesis/fisiología , ARN Bicatenario/metabolismo , Receptores Notch , Alineación de Secuencia
20.
Mol Biol Cell ; 16(7): 3273-88, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15843430

RESUMEN

The intestinal cells of Caenorhabditis elegans embryos contain prominent, birefringent gut granules that we show are lysosome-related organelles. Gut granules are labeled by lysosomal markers, and their formation is disrupted in embryos depleted of AP-3 subunits, VPS-16, and VPS-41. We define a class of gut granule loss (glo) mutants that are defective in gut granule biogenesis. We show that the glo-1 gene encodes a predicted Rab GTPase that localizes to lysosome-related gut granules in the intestine and that glo-4 encodes a possible GLO-1 guanine nucleotide exchange factor. These and other glo genes are homologous to genes implicated in the biogenesis of specialized, lysosome-related organelles such as melanosomes in mammals and pigment granules in Drosophila. The glo mutants thus provide a simple model system for the analysis of lysosome-related organelle biogenesis in animal cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Factores de Intercambio de Guanina Nucleótido/genética , Lisosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Naranja de Acridina/farmacología , Complejo 3 de Proteína Adaptadora , Alelos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Tamaño Corporal , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/genética , Drosophila , Epistasis Genética , GTP Fosfohidrolasas/metabolismo , Genes de Helminto , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Mucosa Intestinal/metabolismo , Melanosomas/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Temperatura , Factores de Transcripción/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...