Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res Bull ; 215: 111015, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879089

RESUMEN

The ubiquitin-proteasome system (UPS) controls the majority of protein degradation in cells and dysregulation of the UPS has been implicated in the pathophysiology of numerous neurodegenerative disorders, including Alzheimer's disease. Further, strong evidence supports a critical role for the UPS in synaptic plasticity and memory formation. However, while proteasome function is known to decrease broadly in the brain across the lifespan, whether it changes in the hippocampus, a region critical for memory storage and among the first impacted in Alzheimer's disease, at rest and following learning in the aged brain remains unknown. Further, which proteins have altered targeting for protein degradation in the aged hippocampus has yet to be explored and whether learning in advanced age interacts with changes in ubiquitin-proteasome function across the lifespan remains unknown. Here, using proteasome activity assays and unbiased proteomic analyses, we report age-dependent changes in proteasome activity and degradation-specific K48 polyubiquitin protein targeting in the hippocampus and retrosplenial cortex of male and female rats across the lifespan. In the hippocampus, the targets of altered protein degradation were involved in transcription and astrocyte structure or G-protein and Interferon signaling in males and females, respectively. Importantly, we found that contextual fear conditioning led to an increase in proteasome activity and K48 polyubiquitin protein targeting in the hippocampus of aged male rats, a result in direct contrast to what was previously reported in young adult animals. Together, these data suggest that changes in protein degradation in the hippocampus across the lifespan may be contributing to age-related memory loss.

2.
Biol Sex Differ ; 14(1): 80, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950270

RESUMEN

BACKGROUND: Sex differences have been observed in several brain regions for the molecular mechanisms involved in baseline (resting) and memory-related processes. The ubiquitin proteasome system (UPS) is a major protein degradation pathway in cells. Sex differences have been observed in lysine-48 (K48)-polyubiquitination, the canonical degradation mark of the UPS, both at baseline and during fear memory formation within the amygdala. Here, we investigated when, how, and why these baseline sex differences arise and whether both sexes require the K48-polyubiquitin mark for memory formation in the amygdala. METHODS: We used a combination of molecular, biochemical and proteomic approaches to examine global and protein-specific K48-polyubiquitination and DNA methylation levels at a major ubiquitin coding gene (Uba52) at baseline in the amygdala of male and female rats before and after puberty to determine if sex differences were developmentally regulated. We then used behavioral and genetic approaches to test the necessity of K48-polyubiquitination in the amygdala for fear memory formation. RESULTS: We observed developmentally regulated baseline differences in Uba52 methylation and total K48-polyubiquitination, with sexual maturity altering levels specifically in female rats. K48-polyubiquitination at specific proteins changed across development in both male and female rats, but sex differences were present regardless of age. Lastly, we found that genetic inhibition of K48-polyubiquitination in the amygdala of female, but not male, rats impaired fear memory formation. CONCLUSIONS: These results suggest that K48-polyubiquitination differentially targets proteins in the amygdala in a sex-specific manner regardless of age. However, sexual maturity is important in the developmental regulation of K48-polyubiquitination levels in female rats. Consistent with these data, K48-polyubiquitin signaling in the amygdala is selectively required to form fear memories in female rats. Together, these data indicate that sex-differences in baseline K48-polyubiquitination within the amygdala are developmentally regulated, which could have important implications for better understanding sex-differences in molecular mechanisms involved in processes relevant to anxiety-related disorders such as post-traumatic stress disorder (PTSD).


Male and female brains have differences in size, development, and cellular processes. Further, males and females have differences in likelihood of developing certain anxiety-related disorders, such as post-traumatic stress disorder (PTSD). We previously observed sex differences in a cellular mechanism that controls the destruction of proteins via tagging by the protein modifier ubiquitin in resting and behaviorally trained animals. We found that adult female rats "ubiquitinated" different proteins during learning and had more ubiquitin than male rats at rest in the amygdala, the brain region that controls emotional regulation. This study investigated if the sex difference in ubiquitin at rest changed as animals age, including the proteins being ubiquitinated and how the amount of ubiquitin was controlled. We also investigated if male and female rats need ubiquitin for memory formation. We found that males and females ubiquitinate different proteins, but that aging also contributes to changes in this, suggesting that sexual maturity may be important for controlling the amount of ubiquitin in females. Lastly, we found that only female rats needed ubiquitin in the amygdala for forming a fear memory. These results are important for understanding the role of ubiquitin activity at different developmental stages and for forming fear-based memories in both sexes. Since females are more likely to develop PTSD than males, these data could help understand how different cellular processes work together in PTSD development to create better treatment options.


Asunto(s)
Poliubiquitina , Complejo de la Endopetidasa Proteasomal , Ratas , Femenino , Masculino , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Poliubiquitina/química , Poliubiquitina/metabolismo , Caracteres Sexuales , Proteómica , Ubiquitina/química , Ubiquitina/metabolismo , Amígdala del Cerebelo/metabolismo
3.
Mol Psychiatry ; 28(6): 2594-2605, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37198264

RESUMEN

Females are more likely than males to develop post-traumatic stress disorder (PTSD). However, the neurobiological mechanisms responsible for these sex differences remain elusive. The ubiquitin proteasome system (UPS) is involved in fear memory formation and implicated in PTSD development. Despite this, proteasome-independent functions of the UPS have rarely been studied in the brain. Here, using a combination of molecular, biochemical, proteomic, behavioral, and novel genetic approaches, we investigated the role of proteasome-independent lysine-63 (K63)-polyubiquitination, the second most abundant ubiquitin modification in cells, in the amygdala during fear memory formation in male and female rats. Only females had increased levels of K63-polyubiquitination targeting in the amygdala following fear conditioning, which targeted proteins involved in ATP synthesis and proteasome function. CRISPR-dCas13b-mediated knockdown of K63-polyubiquitination in the amygdala via editing of the K63 codon in the major ubiquitin gene, Ubc, impaired fear memory in females, but not males, and caused a reduction in learning-related increases in ATP levels and proteasome activity in the female amygdala. These results suggest that proteasome-independent K63-polyubiquitination is selectively involved in fear memory formation in the female amygdala, where it is involved in the regulation of ATP synthesis and proteasome activity following learning. This indicates the first link between proteasome-independent and proteasome-dependent UPS functions in the brain during fear memory formation. Importantly, these data are congruent with reported sex differences in PTSD development and may contribute to our understanding of why females are more likely to develop PTSD than males.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteómica , Femenino , Masculino , Ratas , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Amígdala del Cerebelo/metabolismo , Ubiquitina/metabolismo , Trastornos de la Memoria/metabolismo , Miedo/fisiología , Adenosina Trifosfato/metabolismo
4.
FEBS Lett ; 597(4): 557-572, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36647787

RESUMEN

CADD (chlamydia protein associating with death domains) is a p-aminobenzoate (pAB) synthase involved in a noncanonical route for tetrahydrofolate biosynthesis in Chlamydia trachomatis. Although previously implicated to employ a diiron cofactor, here, we show that pAB synthesis by CADD requires manganese and the physiological cofactor is most likely a heterodinuclear Mn/Fe cluster. Isotope-labeling experiments revealed that the two oxygen atoms in the carboxylic acid portion of pAB are derived from molecular oxygen. Further, mass spectrometry-based proteomic analyses of CADD-derived peptides demonstrated a glycine substitution at Tyr27, providing strong evidence that this residue is sacrificed for pAB synthesis. Additionally, Lys152 was deaminated and oxidized to aminoadipic acid, supporting its proposed role as a sacrificial amino group donor.


Asunto(s)
Chlamydia trachomatis , Ribonucleótido Reductasas , Chlamydia trachomatis/genética , Oxigenasas , Hierro/metabolismo , Manganeso/metabolismo , Aminoácidos , Proteómica , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Oxígeno/metabolismo
5.
Front Aging Neurosci ; 14: 945875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936779

RESUMEN

Tau aggregates are present in multiple neurodegenerative diseases known as "tauopathies," including Alzheimer's disease, Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. Such misfolded tau aggregates are therefore potential sources for selective detection and biomarker discovery. Six human tau isoforms present in brain tissues and both 3R and 4R isoforms have been observed in the neuronal inclusions. To develop selective markers for AD and related rare tauopathies, we first used an engineered tau protein fragment 4RCF as the substrate for ultrasensitive real-time quaking-induced conversion analyses (RT-QuIC). We showed that misfolded tau from diseased AD and other tauopathy brains were able to seed recombinant 4RCF substrate. We further expanded to use six individual recombinant tau isoforms as substrates to amplify misfolded tau seeds from AD brains. We demonstrated, for the first time to our knowledge, that misfolded tau from the postmortem AD brain tissues was able to specifically seed all six full-length human tau isoforms. Our results demonstrated that RT-QuIC analysis can discriminate AD and other tauopathies from non-AD normal controls. We further uncovered that 3R-tau isoforms displayed significantly faster aggregation kinetics than their 4R-tau counterparts under conditions of both no seeding and seeding with AD brain homogenates. In summary, our work offers potential new avenues of misfolded tau detection as potential biomarkers for diagnosis of AD and related tauopathies and provides new insights into isoform-specific human tau aggregation.

6.
Front Mol Neurosci ; 14: 716284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658783

RESUMEN

Ubiquitin-proteasome mediated protein degradation has been widely implicated in fear memory formation in the amygdala. However, to date, the protein targets of the proteasome remain largely unknown, limiting our understanding of the functional significance for protein degradation in fear memory formation. Additionally, whether similar proteins are targeted by the proteasome between sexes has yet to be explored. Here, we combined a degradation-specific K48 Tandem Ubiquitin Binding Entity (TUBE) with liquid chromatography mass spectrometry (LC/MS) to identify the target substrates of the protein degradation process in the amygdala of male and female rats following contextual fear conditioning. We found that males (43) and females (77) differed in the total number of proteins that had significant changes in K48 polyubiquitin targeting in the amygdala following fear conditioning. Many of the identified proteins (106) had significantly reduced levels in the K48-purified samples 1 h after fear conditioning, suggesting active degradation of the substrate due to learning. Interestingly, only 3 proteins overlapped between sexes, suggesting that targets of the protein degradation process may be sex-specific. In females, many proteins with altered abundance in the K48-purified samples were involved in vesicle transport or are associated with microtubules. Conversely, in males, proteins involved in the cytoskeleton, ATP synthesis and cell signaling were found to have significantly altered abundance. Only 1 protein had an opposite directional change in abundance between sexes, LENG1, which was significantly enhanced in males while lower in females. This suggests a more rapid degradation of this protein in females during fear memory formation. Interestingly, GFAP, a critical component of astrocyte structure, was a target of K48 polyubiquitination in both males and females, indicating that protein degradation is likely occurring in astrocytes following fear conditioning. Western blot assays revealed reduced levels of these target substrates following fear conditioning in both sexes, confirming that the K48 polyubiquitin was targeting these proteins for degradation. Collectively, this study provides strong evidence that sex differences exist in the protein targets of the degradation process in the amygdala following fear conditioning and critical information regarding how ubiquitin-proteasome mediated protein degradation may contribute to fear memory formation in the brain.

7.
Learn Mem ; 28(8): 248-253, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34266989

RESUMEN

Strong evidence supports a role for protein degradation in fear memory formation. However, these data have been largely done in only male animals. Here, we found that following contextual fear conditioning, females, but not males, had increased levels of proteasome activity and K48 polyubiquitin protein targeting in the dorsal hippocampus, the latter of which occurred at chaperones or RNA processing proteins. In vivo CRISPR-dCas9-mediated repression of protein degradation in the dorsal hippocampus impaired contextual fear memory in females, but not males. These results suggest a sex-specific role for protein degradation in the hippocampus during the consolidation of a contextual fear memory.


Asunto(s)
Miedo , Hipocampo , Animales , Femenino , Masculino , Proteolisis
8.
Front Behav Neurosci ; 15: 709392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305548

RESUMEN

Strong evidence supports that protein ubiquitination is a critical regulator of fear memory formation. However, as this work has focused on protein degradation, it is currently unknown whether polyubiquitin modifications that are independent of the proteasome are involved in learning-dependent synaptic plasticity. Here, we present the first evidence that atypical linear (M1) polyubiquitination, the only ubiquitin chain that does not occur at a lysine site and is largely independent of the proteasome, is critically involved in contextual fear memory formation in the amygdala in a sex-specific manner. Using immunoblot and unbiased proteomic analyses, we found that male (49) and female (14) rats both had increased levels of linear polyubiquitinated substrates following fear conditioning, though none of these protein targets overlapped between sexes. In males, target protein functions involved cell junction and axonal guidance signaling, while in females the primary target was Adiponectin A, a critical regulator of neuroinflammation, synaptic plasticity, and memory, suggesting sex-dependent functional roles for linear polyubiquitination during fear memory formation. Consistent with these increases, in vivo siRNA-mediated knockdown of Rnf31, an essential component of the linear polyubiquitin E3 complex LUBAC, in the amygdala impaired contextual fear memory in both sexes without affecting memory retrieval. Collectively, these results provide the first evidence that proteasome-independent linear polyubiquitination is a critical regulator of fear memory formation, expanding the potential roles of ubiquitin-signaling in learning-dependent synaptic plasticity. Importantly, our data identify a novel sex difference in the functional role of, but not a requirement for, linear polyubiquitination in fear memory formation.

9.
J Bacteriol ; 202(14)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32393521

RESUMEN

Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems.IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sinorhizobium meliloti/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Quimiotaxis , Transducción de Señal , Sinorhizobium meliloti/química , Sinorhizobium meliloti/genética
10.
Gen Comp Endocrinol ; 285: 113267, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31491375

RESUMEN

Corticosterone is widely regarded to be the predominant glucocorticoid produced in amphibians. However, we recently described unusually low baseline and stress-induced corticosterone profiles in eastern hellbenders (Cryptobranchus alleganiensis alleganiensis), a giant, fully aquatic salamander. Here, we hypothesized that hellbenders might also produce cortisol, the predominant glucocorticoid used by fishes and non-rodent mammals. To test our hypothesis, we collected plasma samples in two field experiments and analyzed them using multiple analytical techniques to determine how plasma concentrations of cortisol and corticosterone co-varied after 1) physical restraint and 2) injection with adrenocorticotropic hormone (ACTH), the pituitary hormone responsible for triggering the release of glucocorticoids from amphibian interrenal glands. Using liquid chromatography-mass spectrometry, we found that baseline and restraint-induced plasma concentrations of cortisol were more than five times those of corticosterone. We then demonstrated that plasma concentrations of both glucocorticoids increased in response to ACTH in a dose-dependent manner, but cortisol concentrations were consistently higher (up to 10-fold) than corticosterone. Cortisol and corticosterone concentrations were not correlated with one another at basal or induced conditions. The extremely low plasma concentrations of corticosterone in hellbenders suggests that corticosterone could simply be a byproduct of cortisol production, and raises questions as to whether corticosterone has any distinct physiological function in hellbenders. Our results indicate that hellbenders produce cortisol as their predominant glucocorticoid, supporting a small and inconclusive body of literature indicating that some other amphibians may produce appreciable quantities of cortisol. We hypothesize that the use of cortisol by hellbenders could be an adaptation to their fully aquatic life history due to cortisol's ability to fulfill both mineralocorticoid and glucocorticoid functions, similar to its functions in fishes. Given the large number of amphibian species that are fully aquatic or have aquatic life stages, we suggest that the broadly held assumption that corticosterone is the predominant glucocorticoid in all amphibians requires further scrutiny. Ultimately, multi-species tests of this assumption will reveal the ecological factors that influenced the evolution of endocrine adaptations among amphibian lineages, and may provide insight into convergent evolution of endocrine traits in paedomorphic species.


Asunto(s)
Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Urodelos/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Animales , Corticosterona/sangre , Hidrocortisona/sangre , Masculino , Urodelos/sangre
11.
Sci Rep ; 9(1): 17532, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772212

RESUMEN

Enzymes of the serine hydrolase superfamily are ubiquitous, highly versatile catalysts that mediate a wide variety of metabolic reactions in eukaryotic cells, while also being amenable to selective inhibition. We have employed a fluorophosphonate-based affinity capture probe and mass spectrometry to explore the expression profile and metabolic roles of the 56-member P. falciparum serine hydrolase superfamily in the asexual erythrocytic stage of P. falciparum. This approach provided a detailed census of active serine hydrolases in the asexual parasite, with identification of 21 active serine hydrolases from α/ß hydrolase, patatin, and rhomboid protease families. To gain insight into their functional roles and substrates, the pan-lipase inhibitor isopropyl dodecylfluorophosphonate was employed for competitive activity-based protein profiling, leading to the identification of seven serine hydrolases with potential lipolytic activity. We demonstrated how a chemoproteomic approach can provide clues to the specificity of serine hydrolases by using a panel of neutral lipase inhibitors to identify an enzyme that reacts potently with a covalent monoacylglycerol lipase inhibitor. In combination with existing phenotypic data, our studies define a set of serine hydrolases that likely mediate critical metabolic reactions in asexual parasites and enable rational prioritization of future functional characterization and inhibitor development efforts.


Asunto(s)
Eritrocitos/parasitología , Hidrolasas/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Biotina/análogos & derivados , Humanos , Hidrolasas/antagonistas & inhibidores , Estadios del Ciclo de Vida , Lipólisis , Plasmodium falciparum/crecimiento & desarrollo , Proteómica , Serina/metabolismo
12.
Nutr Diabetes ; 9(1): 13, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931934

RESUMEN

BACKGROUND: The hypothalamus is the ultimate modulator of appetite and energy balance and therefore sensitive to changes in nutritional state. Chicks from lines selected for low (LWS) and high (HWS) body weight are hypophagic and compulsive eaters, respectively, and differ in their propensity to become obese and in their hypothalamic mRNA response to fasting. METHODS: As fasting-induced changes in hypothalamic proteins are unknown, we investigated the hypothalamic proteomes of 5-day old LWS and HWS chicks in the fed and fasted states using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. RESULTS: A total of 744 proteins were identified in the chicken hypothalamus, and 268 differentially abundant proteins were identified among four pairwise comparisons. Ninety-five proteins were associated with the response to fasting in HWS chicks, and 23 proteins were associated with the response to fasting in LWS chicks. Fasting-responsive proteins in HWS chicks were significantly enriched in ATP metabolic processes, glyoxylate/dicarboxylate metabolism, and ribosome function. There was no enrichment for any pathways in LWS chicks in response to fasting. In the fasted and fed states, 159 and 119 proteins differed between HWS and LWS, respectively. Oxidative phosphorylation, citric acid cycle, and carbon metabolism were the main pathways associated with differences between the two lines of chicks. Enzymes associated with metabolic pathways differed between HWS and LWS in both nutritional states, including fumarase, aspartate aminotransferase, mitochondrial GOT2, 3-hydroxyisobutyrate dehydrogenase, chondrogenesis associated lipocalin, sialic acid synthase, arylamine N-acetyltransferase, pineal gland isozyme NAT-3, and succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial. CONCLUSIONS: These results provide insights into the hypothalamic metabolic pathways that are affected by nutritional status and the regulation of appetite and eating behavior.


Asunto(s)
Anorexia/metabolismo , Peso Corporal/fisiología , Ayuno/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Proteoma , Animales , Apetito/fisiología , Pollos , Cromatografía Liquida , Ingestión de Alimentos/fisiología , Especificidad de la Especie , Espectrometría de Masas en Tándem
13.
J Bacteriol ; 201(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602489

RESUMEN

Bacterial endospores produced by Bacillus and Clostridium species can remain dormant and highly resistant to environmental insults for long periods, but they can also rapidly germinate in response to a nutrient-rich environment. Multiple proteins involved in sensing and responding to nutrient germinants, initiating solute and water transport, and accomplishing spore wall degradation are associated with the membrane surrounding the spore core. In order to more fully catalog proteins that may be involved in spore germination, as well as to identify protein changes taking place during germination, unbiased proteomic analyses of membrane preparations isolated from dormant and germinated spores of Bacillus anthracis and Bacillus subtilis were undertaken. Membrane-associated proteins were fractionated by SDS-PAGE, gel slices were trypsin digested, and extracted peptides were fractionated by liquid chromatography and analyzed by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. More than 500 proteins were identified from each preparation. Bioinformatic methods were used to characterize proteins with regard to membrane association, cellular function, and conservation across species. Numerous proteins not previously known to be spore associated, 6 in B. subtilis and 68 in B. anthracis, were identified. Relative quantitation based on spectral counting indicated that the majority of spore membrane proteins decrease in abundance during the first 20 min of germination. The spore membranes contained several proteins thought to be involved in the transport of metal ions, a process that plays a major role in spore formation and germination. Analyses of mutant strains lacking these transport proteins implicated YloB in the accumulation of calcium within the developing forespore.IMPORTANCE Bacterial endospores can remain dormant and highly resistant to environmental insults for long periods but can also rapidly germinate in response to a nutrient-rich environment. The persistence and subsequent germination of spores contribute to their colonization of new environments and to the spread of certain diseases. Proteins of Bacillus subtilis and Bacillus anthracis were identified that are associated with the spore membrane, a position that can allow them to contribute to germination. A set of identified proteins that are predicted to carry out ion transport were examined for their contributions to spore formation, stability, and germination. Greater knowledge of spore formation and germination can contribute to the development of better decontamination strategies.


Asunto(s)
Bacillus anthracis/química , Bacillus subtilis/química , Proteínas de Transporte de Membrana/análisis , Proteoma/análisis , Esporas Bacterianas/química , Cromatografía Liquida , Biología Computacional , Electroforesis en Gel de Poliacrilamida , Proteolisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/metabolismo
14.
J Biol Chem ; 293(25): 9812-9823, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29724822

RESUMEN

Nitrogenases reduce atmospheric nitrogen, yielding the basic inorganic molecule ammonia. The nitrogenase MoFe protein contains two cofactors, a [7Fe-9S-Mo-C-homocitrate] active-site species, designated FeMo-cofactor, and a [8Fe-7S] electron-transfer mediator called P-cluster. Both cofactors are essential for molybdenum-dependent nitrogenase catalysis in the nitrogen-fixing bacterium Azotobacter vinelandii We show here that three proteins, NafH, NifW, and NifZ, copurify with MoFe protein produced by an A. vinelandii strain deficient in both FeMo-cofactor formation and P-cluster maturation. In contrast, two different proteins, NifY and NafY, copurified with MoFe protein deficient only in FeMo-cofactor formation. We refer to proteins associated with immature MoFe protein in the following as "assembly factors." Copurifications of such assembly factors with MoFe protein produced in different genetic backgrounds revealed their sequential and differential interactions with MoFe protein during the maturation process. We found that these interactions occur in the order NafH, NifW, NifZ, and NafY/NifY. Interactions of NafH, NifW, and NifZ with immature forms of MoFe protein preceded completion of P-cluster maturation, whereas interaction of NafY/NifY preceded FeMo-cofactor insertion. Because each assembly factor could independently bind an immature form of MoFe protein, we propose that subpopulations of MoFe protein-assembly factor complexes represent MoFe protein captured at different stages of a sequential maturation process. This suggestion was supported by separate isolation of three such complexes, MoFe protein-NafY, MoFe protein-NifY, and MoFe protein-NifW. We conclude that factors involved in MoFe protein maturation sequentially bind and dissociate in a dynamic process involving several MoFe protein conformational states.


Asunto(s)
Azotobacter vinelandii/enzimología , Molibdoferredoxina/metabolismo , Nitrogenasa/química , Nitrogenasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Transporte de Electrón , Conformación Proteica
15.
PLoS One ; 13(3): e0194734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29570734

RESUMEN

The Aedes aegypti mosquito is the principal vector of arboviruses such as dengue, chikungunya, yellow fever, and Zika virus. These arboviruses are transmitted during adult female mosquito bloodfeeding. While these viruses must transverse the midgut to replicate, the blood meal must also reach the midgut to be digested, absorbed, or excreted, as aggregation of blood meal metabolites can be toxic to the female mosquito midgut. The midgut peritrophic matrix (PM), a semipermeable extracellular layer comprised of chitin fibrils, glycoproteins, and proteoglycans, is one such mechanism of protection for the mosquito midgut. However, this structure has not been characterized for adult female Ae. aegypti. We conducted a mass spectrometry based proteomic analysis to identify proteins that comprise or are associated with the adult female Ae. aegypti early midgut PM. Altogether, 474 unique proteins were identified, with 115 predicted as secreted. GO-term enrichment analysis revealed an abundance of serine-type proteases and several known and novel intestinal mucins. In addition, approximately 10% of the peptides identified corresponded to known salivary proteins, indicating Ae. aegypti mosquitoes extensively swallow their own salivary secretions. However, the physiological relevance of this remains unclear, and further studies are needed to determine PM proteins integral for midgut protection from blood meal derived toxicity and pathogen protection. Finally, we describe substantial discordance between previously described transcriptionally changes observed in the midgut in response to a bloodmeal and the presence of the corresponding protein in the PM. Data are available via ProteomeXchange with identifier PXD007627.


Asunto(s)
Aedes/metabolismo , Tracto Gastrointestinal/metabolismo , Proteoma/análisis , Espectrometría de Masas en Tándem , Aedes/virología , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional , Femenino , Tracto Gastrointestinal/virología , Glándulas Salivales/metabolismo , Proteínas y Péptidos Salivales/metabolismo
16.
Proteomes ; 5(3)2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28698516

RESUMEN

Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.

17.
Biochemistry ; 55(31): 4255-8, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27431615

RESUMEN

Amyloid formation of the 37-residue amylin is involved in the pathogenesis of type 2 diabetes and, potentially, diabetes-induced neurological deficits. Numerous flavonoids exhibit inhibitory effects against amylin amyloidosis, but the mechanisms of inhibition remain unclear. Screening a library of natural compounds uncovered a potent lead compound, the flavone baicalein. Baicalein inhibits amylin amyloid formation and reduces amylin-induced cytotoxicity. Analogue analyses demonstrated, for the first time, key roles of the vicinal hydroxyl groups on the A-ring. We provided mass spectrometric evidence that incubating baicalein and amylin leads to their conjugation, consistent with a Schiff base mechanism.


Asunto(s)
Flavanonas/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Polipéptido Amiloide de los Islotes Pancreáticos/química , Diabetes Mellitus Tipo 2/etiología , Evaluación Preclínica de Medicamentos , Flavanonas/química , Antagonistas de Hormonas/química , Antagonistas de Hormonas/farmacología , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/ultraestructura , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Relación Estructura-Actividad
18.
J Bacteriol ; 198(12): 1773-1782, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068591

RESUMEN

UNLABELLED: Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to ß-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. IMPORTANCE: Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in the disease. How C. perfringens controls the germination process is still not completely understood. We characterized the proteome of the membranes from dormant and germinated spores and discovered that large-scale changes occur after germination is initiated. One of the proteins that was detected after germination was the enzyme cyanophycinase, which degrades the storage compound cyanophycin, which is found in cyanobacteria and other prokaryotes. A cyanophycin synthetase mutant was constructed and found to make spores with altered morphology but normal heat resistance, suggesting that cyanophycin plays a different role in C. perfringens than it does in cyanobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium perfringens/crecimiento & desarrollo , Proteoma/metabolismo , Esporas Bacterianas/enzimología , Proteínas Bacterianas/genética , Clostridium perfringens/química , Clostridium perfringens/enzimología , Clostridium perfringens/genética , Espectrometría de Masas , Proteoma/química , Proteoma/genética , Esporas Bacterianas/química , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo
19.
Proteome Sci ; 15: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28649179

RESUMEN

BACKGROUND: Liver models that closely mimic the in vivo microenvironment are useful for understanding liver functions, capabilities, and intercellular communication processes. Three-dimensional (3D) liver models assembled using hepatocytes and liver sinusoidal endothelial cells (LSECs) separated by a polyelectrolyte multilayer (PEM) provide a functional system while also permitting isolation of individual cell types for proteomic analyses. METHODS: To better understand the mechanisms and processes that underlie liver model function, hepatocytes were maintained as monolayers and 3D PEM-based formats in the presence or absence of primary LSECs. The resulting hepatocyte proteomes, the proteins in the PEM, and extracellular levels of urea, albumin and glucose after three days of culture were compared. RESULTS: All systems were ketogenic and found to release glucose. The presence of the PEM led to increases in proteins associated with both mitochondrial and peroxisomal-based ß-oxidation. The PEMs also limited production of structural and migratory proteins associated with dedifferentiation. The presence of LSECs increased levels of Phase I and Phase II biotransformation enzymes as well as several proteins associated with the endoplasmic reticulum and extracellular matrix remodeling. The proteomic analysis of the PEMs indicated that there was no significant change after three days of culture. These results are discussed in relation to liver model function. CONCLUSIONS: Heterotypic cell-cell and cell-ECM interactions exert different effects on hepatocyte functions and phenotypes.

20.
Biochemistry ; 54(19): 2997-3008, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25905665

RESUMEN

A single enzyme, 4-(hydroxymethyl)-2-furancarboxaldehyde-phosphate synthase (MfnB), from the methanogen Methanocaldococcus jannaschii catalyzed at least 10 separate chemical reactions in converting two molecules of glyceraldehyde-3-P (GA-3-P) to 4-(hydroxymethyl)-2-furancarboxaldehyde-P (4-HFC-P), the first discrete intermediate in the biosynthetic pathway to the furan moiety of the coenzyme methanofuran. Here we describe the biochemical characterization of the recombinantly expressed MfnB to understand its catalytic mechanism. Site-directed mutagenesis showed that the strictly conserved residues (Asp25, Lys27, Lys85, and Asp151) around the active site are all essential for enzyme catalysis. Matrix-assisted laser desorption/ionization analysis of peptide fragments of MfnB incubated with GA-3-P followed by NaBH4 reduction and trypsin digestion identified a peptide with a mass/charge ratio of 1668.8 m/z present only in the D25N, D151N, and K155R mutants, which is consistent with Lys27 having increased by a mass of 58 m/z, indicating that Lys27 forms a Schiff base with a methylglyoxal-like intermediate. In addition, incubation of MfnB with GA-3-P in the presence of deuterated water or incubation of MfnB with C-2 deuterated GA-3-P showed essentially no deuterium incorporated into the 4-HFC-P. Combined with structural analysis and molecular docking, we predict the potential binding sites for two GA-3P molecules in the active site. On the basis of our observations, a possible catalytic mechanism of MfnB is proposed in this study. A phosphate elimination reaction and a triose phosphate isomerase-like reaction occur at the GA-3-P binding site I and II, respectively, prior to the aldol condensation between the enzyme-bound enol form of methylglyoxal and dihydroxyacetone phosphate (DHAP), after which the catalytic cycle is completed by a cyclization and two dehydration reactions assisted by several general acids/bases at the same active site.


Asunto(s)
Gliceraldehído 3-Fosfato/metabolismo , Aldehído-Liasas/metabolismo , Catálisis , Dihidroxiacetona Fosfato/metabolismo , Methanocaldococcus/metabolismo , Mutación , Piruvaldehído/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...