Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741591

RESUMEN

Neuronal tau reduction confers resilience against ß-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.


Asunto(s)
Enfermedad de Alzheimer , Factores de Transcripción , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Ratones , Placa Amiloide/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Nat Biotechnol ; 37(8): 945-952, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31359006

RESUMEN

Engineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites. For three ZFN pairs, we engineered single-residue substitutions in the FokI domain that preserved full on-target activity but showed a reduction in off-target indels of up to 3,000-fold. By combining this approach with substitutions that reduced the affinity of zinc fingers, we developed ZFNs specific for the TRAC locus that mediated 98% knockout in T cells with no detectable off-target activity at an assay background of ~0.01%. We anticipate that this approach, and the FokI variants we report, will enable routine generation of nucleases for gene editing with no detectable off-target activity.


Asunto(s)
División del ADN , Edición Génica/métodos , Linfocitos T , Secuencia de Bases , ADN/genética , ADN/metabolismo , Citometría de Flujo , Células Madre Hematopoyéticas , Humanos , Células K562 , Dominios Proteicos , ARN Mensajero
3.
Nat Med ; 25(7): 1131-1142, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263285

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.


Asunto(s)
Alelos , Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , Mutación , Transcripción Genética , Dedos de Zinc , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Neuroprotección , Repeticiones de Trinucleótidos
4.
Nat Commun ; 10(1): 1133, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850604

RESUMEN

Genome editing for therapeutic applications often requires cleavage within a narrow sequence window. Here, to enable such high-precision targeting with zinc-finger nucleases (ZFNs), we have developed an expanded set of architectures that collectively increase the configurational options available for design by a factor of 64. These new architectures feature the functional attachment of the FokI cleavage domain to the amino terminus of one or both zinc-finger proteins (ZFPs) in the ZFN dimer, as well as the option to skip bases between the target triplets of otherwise adjacent fingers in each zinc-finger array. Using our new architectures, we demonstrate targeting of an arbitrarily chosen 28 bp genomic locus at a density that approaches 1.0 (i.e., efficient ZFNs available for targeting almost every base step). We show that these new architectures may be used for targeting three loci of therapeutic significance with a high degree of precision, efficiency, and specificity.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/genética , Edición Génica/métodos , Genoma Humano , Ingeniería de Proteínas/métodos , Nucleasas con Dedos de Zinc/genética , Emparejamiento Base , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sitios Genéticos , Biblioteca Genómica , Humanos , Mutación INDEL , Células K562 , Biblioteca de Péptidos , Plásmidos/química , Plásmidos/metabolismo , Transformación Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Nucleasas con Dedos de Zinc/metabolismo
5.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250142

RESUMEN

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Asunto(s)
Edición Génica , Mitocondrias Cardíacas/genética , Enfermedades Mitocondriales/genética , Nucleasas con Dedos de Zinc/genética , Animales , ADN Mitocondrial/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias Cardíacas/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/terapia , Mutación/genética , Pronóstico , ARN de Transferencia/genética , Nucleasas con Dedos de Zinc/uso terapéutico
6.
Mol Ther Methods Clin Dev ; 4: 137-148, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28344999

RESUMEN

To develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34+ hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34+ cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34+ cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34+ HSPCs as an autologous stem cell therapy in SCD patients.

7.
Stem Cell Reports ; 7(2): 139-48, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27396937

RESUMEN

Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by mutations in the gene encoding the WAS protein (WASp). Here, induced pluripotent stem cells (iPSCs) were derived from a WAS patient (WAS-iPSC) and the endogenous chromosomal WAS locus was targeted with a wtWAS-2A-eGFP transgene using zinc finger nucleases (ZFNs) to generate corrected WAS-iPSC (cWAS-iPSC). WASp and GFP were first expressed in the earliest CD34(+)CD43(+)CD45(-) hematopoietic precursor cells and later in all hematopoietic lineages examined. Whereas differentiation to non-lymphoid lineages was readily obtained from WAS-iPSCs, in vitro T lymphopoiesis from WAS-iPSC was deficient with few CD4(+)CD8(+) double-positive and mature CD3(+) T cells obtained. T cell differentiation was restored for cWAS-iPSCs. Similarly, defects in natural killer cell differentiation and function were restored on targeted correction of the WAS locus. These results demonstrate that the defects exhibited by WAS-iPSC-derived lymphoid cells were fully corrected and suggests the potential therapeutic use of gene-corrected WAS-iPSCs.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas/patología , Linfopoyesis , Síndrome de Wiskott-Aldrich/patología , Síndrome de Wiskott-Aldrich/terapia , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Células Asesinas Naturales/metabolismo , Linfocitos T/inmunología , Proteína del Síndrome de Wiskott-Aldrich/genética
8.
Blood ; 127(20): 2416-26, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-26980728

RESUMEN

Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well.


Asunto(s)
Trasplante de Médula Ósea , Linaje de la Célula , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Macaca nemestrina/genética , Receptores CCR5/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Electroporación , Estudios de Factibilidad , Técnicas de Silenciamiento del Gen , Supervivencia de Injerto , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética , Receptores CCR5/deficiencia , Análisis de Secuencia de ADN , Acondicionamiento Pretrasplante , Trasplante Autólogo , Irradiación Corporal Total , Dedos de Zinc
9.
Sci Rep ; 6: 21757, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902653

RESUMEN

Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race. Elimination of HLA-A expression in HSC was achieved using artificial zinc finger nucleases designed to target HLA-A alleles. Significantly, these engineered HSCs maintain their ability to engraft and reconstitute hematopoiesis in immunocompromised mice. This introduced loss of HLA-A expression decreases the need to recruit large number of donors to match with potential recipients and has particular importance for patients whose HLA repertoire is under-represented in the current donor pool. Furthermore, the genetic engineering of stem cells provides a translational approach to HLA-match a limited number of third-party donors with a wide number of recipients.


Asunto(s)
Desoxirribonucleasas/genética , Eliminación de Gen , Antígenos HLA-A/genética , Trasplante de Células Madre Hematopoyéticas/etnología , Células Madre Hematopoyéticas/inmunología , Alelos , Animales , Desoxirribonucleasas/metabolismo , Selección de Donante/ética , Expresión Génica , Ingeniería Genética/métodos , Antígenos HLA-A/inmunología , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Antígenos HLA-C/genética , Antígenos HLA-C/inmunología , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Accesibilidad a los Servicios de Salud/ética , Trasplante de Células Madre Hematopoyéticas/ética , Células Madre Hematopoyéticas/citología , Prueba de Histocompatibilidad , Humanos , Ratones , Grupos Raciales , Trasplante Heterólogo , Trasplante Homólogo , Donante no Emparentado , Dedos de Zinc
10.
Sci Rep ; 6: 21645, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26898342

RESUMEN

We describe a fundamentally novel feat of animal genetic engineering: the precise and efficient substitution of an agronomic haplotype into a domesticated species. Zinc finger nuclease in-embryo editing of the RELA locus generated live born domestic pigs with the warthog RELA orthologue, associated with resilience to African Swine Fever. The ability to efficiently achieve interspecies allele introgression in one generation opens unprecedented opportunities for agriculture and basic research.


Asunto(s)
Resistencia a la Enfermedad/genética , Edición Génica/métodos , Ingeniería Genética , Ligasas/genética , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/patogenicidad , Alelos , Animales , Genoma , Haplotipos , Porcinos
11.
Nat Commun ; 7: 10194, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738816

RESUMEN

Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity.


Asunto(s)
Desoxirribonucleasas/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Receptores CCR5/metabolismo , Dedos de Zinc , Animales , Proteínas de Unión al ADN/genética , Desoxirribonucleasas/genética , Genes Reporteros , Genoma , Humanos , Biblioteca de Péptidos , Receptores CCR2/metabolismo
12.
Nat Methods ; 12(10): 927-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322838

RESUMEN

Regulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.


Asunto(s)
Proteínas Portadoras/genética , Huella de ADN/métodos , Genómica/métodos , Proteínas Nucleares/genética , Secuencias Reguladoras de Ácidos Nucleicos , Secuencia de Bases , Sitios de Unión , Roturas del ADN de Doble Cadena , Reparación del ADN , Elementos de Facilitación Genéticos , Eritrocitos/fisiología , Eritropoyesis , Genoma Humano , Humanos , Mutación , Proteínas Represoras , Factores de Transcripción/metabolismo
13.
Blood ; 126(15): 1777-84, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26297739

RESUMEN

Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases.


Asunto(s)
Albúminas/genética , Terapia de Reemplazo Enzimático , Terapia Genética , Genoma , Hígado/metabolismo , Transgenes/fisiología , Albúminas/metabolismo , Animales , Dependovirus/genética , Endonucleasas , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Factor IX/genética , Factor VIII/genética , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Vectores Genéticos/administración & dosificación , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lisosomas/enzimología , Ratones , Ratones Endogámicos C57BL , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/terapia , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/terapia , Regiones Promotoras Genéticas/genética , Edición de ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Dedos de Zinc
14.
Mol Ther ; 23(8): 1380-1390, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25939491

RESUMEN

Programmed cell death-1 (PD-1) is expressed on activated T cells and represents an attractive target for gene-editing of tumor targeted T cells prior to adoptive cell transfer (ACT). We used zinc finger nucleases (ZFNs) directed against the gene encoding human PD-1 (PDCD-1) to gene-edit melanoma tumor infiltrating lymphocytes (TIL). We show that our clinical scale TIL production process yielded efficient modification of the PD-1 gene locus, with an average modification frequency of 74.8% (n = 3, range 69.9-84.1%) of the alleles in a bulk TIL population, which resulted in a 76% reduction in PD-1 surface-expression. Forty to 48% of PD-1 gene-edited cells had biallelic PD-1 modification. Importantly, the PD-1 gene-edited TIL product showed improved in vitro effector function and a significantly increased polyfunctional cytokine profile (TNFα, GM-CSF, and IFNγ) compared to unmodified TIL in two of the three donors tested. In addition, all donor cells displayed an effector memory phenotype and expanded approximately 500-2,000-fold in vitro. Thus, further study to determine the efficiency and safety of adoptive cell transfer using PD-1 gene-edited TIL for the treatment of metastatic melanoma is warranted.


Asunto(s)
Endorribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/terapia , Receptor de Muerte Celular Programada 1/genética , Dedos de Zinc , Alelos , Animales , Separación Celular , Citocinas/metabolismo , Femenino , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Memoria Inmunológica , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25733580

RESUMEN

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Asunto(s)
Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Mutación , Globinas beta/genética , Anemia de Células Falciformes/patología , Animales , Antígenos CD34/análisis , Secuencia de Bases , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células Cultivadas , Endodesoxirribonucleasas/metabolismo , Sangre Fetal/trasplante , Sitios Genéticos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Datos de Secuencia Molecular , Dedos de Zinc
16.
Nat Methods ; 12(5): 465-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25799440

RESUMEN

Transcription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific. Here we address this limitation by developing an expanded set of RVDs and applying them to improve the performance of previously described TALEs. As an extreme example, total conversion of a TALE nuclease to new RVDs substantially reduced off-target cleavage in cellular studies. By providing new RVDs and design strategies, these studies establish options for developing improved TALEs for broader application across medicine and biotechnology.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Genoma , Edición de ARN/fisiología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , ADN/genética , Ensayo de Inmunoadsorción Enzimática , Marcadores Genéticos , Factores de Transcripción/genética
17.
Stem Cell Reports ; 2(6): 838-52, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24936470

RESUMEN

Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Perfilación de la Expresión Génica/métodos , Intestinos/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Cultivadas , Humanos , Receptores Acoplados a Proteínas G/metabolismo
18.
EMBO Mol Med ; 6(4): 458-66, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24567072

RESUMEN

We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the "common deletion" (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild-type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof-of-principle that, through heteroplasmy manipulation, delivery of site-specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species.


Asunto(s)
ADN Mitocondrial/metabolismo , Terapia Genética , Genoma Mitocondrial , Mitocondrias/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación Puntual , Eliminación de Secuencia , ADN Mitocondrial/genética , Desoxirribonucleasas , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/metabolismo , Transporte de Proteínas
19.
Plant Biotechnol J ; 11(9): 1126-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23953646

RESUMEN

Modern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high-efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular 'trait landing pads' (TLPs) that allow 'mix-and-match', on-demand transgene integration and trait stacking in crop plants. We illustrate the utility of nuclease-driven TLP technology by applying it to the stacking of herbicide resistance traits. We first integrated into the maize genome an herbicide resistance gene, pat, flanked with a TLP (ZFN target sites and sequences homologous to incoming DNA) using WHISKERS™-mediated transformation of embryogenic suspension cultures. We established a method for targeted transgene integration based on microparticle bombardment of immature embryos and used it to deliver a second trait precisely into the TLP via cotransformation with a donor DNA containing a second herbicide resistance gene, aad1, flanked by sequences homologous to the integrated TLP along with a corresponding ZFN expression construct. Remarkably, up to 5% of the embryo-derived transgenic events integrated the aad1 transgene precisely at the TLP, that is, directly adjacent to the pat transgene. Importantly and consistent with the juxtaposition achieved via nuclease-driven TLP technology, both herbicide resistance traits cosegregated in subsequent generations, thereby demonstrating linkage of the two independently transformed transgenes. Because ZFN-mediated targeted transgene integration is becoming applicable across an increasing number of crop species, this work exemplifies a simple, facile and rapid approach to trait stacking.


Asunto(s)
Endonucleasas/genética , Marcación de Gen/métodos , Genoma de Planta/genética , Resistencia a los Herbicidas , Herbicidas/farmacología , Zea mays/genética , Productos Agrícolas , Endonucleasas/metabolismo , Ligamiento Genético , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transgenes , Dedos de Zinc
20.
Nature ; 500(7462): 296-300, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863942

RESUMEN

Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.


Asunto(s)
Cromosomas Humanos Par 21/genética , Compensación de Dosificación (Genética) , Síndrome de Down/genética , ARN Largo no Codificante/metabolismo , Animales , Línea Celular , Proliferación Celular , Metilación de ADN , Síndrome de Down/terapia , Silenciador del Gen , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Mutagénesis Insercional , Neurogénesis , ARN Largo no Codificante/genética , Cromatina Sexual/genética , Inactivación del Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA