Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pharmacoeconomics ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967909

RESUMEN

BACKGROUND: The majority of recent estimates on the direct medical cost attributable to hospital-onset infections (HOIs) has focused on device- or procedure-associated HOIs. The attributable costs of HOIs that are not associated with device use or procedures have not been extensively studied. OBJECTIVE: We developed simulation models of attributable cost for 16 HOIs and estimated the total direct medical cost, including nondevice-related HOIs in the USA for 2011 and 2015. DATA AND METHODS: We used total discharge costs associated with HOI-related hospitalization from the National Inpatient Sample and applied an analogy costing methodology to develop simulation models of the costs attributable to HOIs. The mean attributable cost estimate from the simulation analysis was then multiplied by previously published estimates of the number of HOIs for 2011 and 2015 to generate national estimates of direct medical costs. RESULTS: After adjusting all estimates to 2017 US dollars, attributable cost estimates for select nondevice-related infections attributable cost estimates ranged from $7661 for ear, eye, nose, throat, and mouth (EENTM) infections to $27,709 for cardiovascular system infections in 2011; and from $8394 for EENTM to $26,445 for central nervous system infections in 2016 (based on 2015 incidence data). The national direct medical costs for all HOIs were $14.6 billion in 2011 and $12.1 billion in 2016. Nondevice- and nonprocedure-associated HOIs comprise approximately 26-28% of total HOI costs. CONCLUSION: Results suggest that nondevice- and nonprocedure-related HOIs result in considerable costs to the healthcare system.

2.
NEJM Evid ; 3(5): EVIDoa2300342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38815164

RESUMEN

BACKGROUND: Detection and containment of hospital outbreaks currently depend on variable and personnel-intensive surveillance methods. Whether automated statistical surveillance for outbreaks of health care-associated pathogens allows earlier containment efforts that would reduce the size of outbreaks is unknown. METHODS: We conducted a cluster-randomized trial in 82 community hospitals within a larger health care system. All hospitals followed an outbreak response protocol when outbreaks were detected by their infection prevention programs. Half of the hospitals additionally used statistical surveillance of microbiology data, which alerted infection prevention programs to outbreaks. Statistical surveillance was also applied to microbiology data from control hospitals without alerting their infection prevention programs. The primary outcome was the number of additional cases occurring after outbreak detection. Analyses assessed differences between the intervention period (July 2019 to January 2022) versus baseline period (February 2017 to January 2019) between randomized groups. A post hoc analysis separately assessed pre-coronavirus disease 2019 (Covid-19) and Covid-19 pandemic intervention periods. RESULTS: Real-time alerts did not significantly reduce the number of additional outbreak cases (intervention period versus baseline: statistical surveillance relative rate [RR]=1.41, control RR=1.81; difference-in-differences, 0.78; 95% confidence interval [CI], 0.40 to 1.52; P=0.46). Comparing only the prepandemic intervention with baseline periods, the statistical outbreak surveillance group was associated with a 64.1% reduction in additional cases (statistical surveillance RR=0.78, control RR=2.19; difference-in-differences, 0.36; 95% CI, 0.13 to 0.99). There was no similarly observed association between the pandemic versus baseline periods (statistical surveillance RR=1.56, control RR=1.66; difference-in-differences, 0.94; 95% CI, 0.46 to 1.92). CONCLUSIONS: Automated detection of hospital outbreaks using statistical surveillance did not reduce overall outbreak size in the context of an ongoing pandemic. (Funded by the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT04053075. Support for HCA Healthcare's participation in the study was provided in kind by HCA.).


Asunto(s)
COVID-19 , Infección Hospitalaria , Brotes de Enfermedades , Humanos , Brotes de Enfermedades/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Control de Infecciones/métodos , SARS-CoV-2 , Hospitales Comunitarios
3.
JAMA ; 330(14): 1337-1347, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815567

RESUMEN

Importance: Universal nasal mupirocin plus chlorhexidine gluconate (CHG) bathing in intensive care units (ICUs) prevents methicillin-resistant Staphylococcus aureus (MRSA) infections and all-cause bloodstream infections. Antibiotic resistance to mupirocin has raised questions about whether an antiseptic could be advantageous for ICU decolonization. Objective: To compare the effectiveness of iodophor vs mupirocin for universal ICU nasal decolonization in combination with CHG bathing. Design, Setting, and Participants: Two-group noninferiority, pragmatic, cluster-randomized trial conducted in US community hospitals, all of which used mupirocin-CHG for universal decolonization in ICUs at baseline. Adult ICU patients in 137 randomized hospitals during baseline (May 1, 2015-April 30, 2017) and intervention (November 1, 2017-April 30, 2019) were included. Intervention: Universal decolonization involving switching to iodophor-CHG (intervention) or continuing mupirocin-CHG (baseline). Main Outcomes and Measures: ICU-attributable S aureus clinical cultures (primary outcome), MRSA clinical cultures, and all-cause bloodstream infections were evaluated using proportional hazard models to assess differences from baseline to intervention periods between the strategies. Results were also compared with a 2009-2011 trial of mupirocin-CHG vs no decolonization in the same hospital network. The prespecified noninferiority margin for the primary outcome was 10%. Results: Among the 801 668 admissions in 233 ICUs, the participants' mean (SD) age was 63.4 (17.2) years, 46.3% were female, and the mean (SD) ICU length of stay was 4.8 (4.7) days. Hazard ratios (HRs) for S aureus clinical isolates in the intervention vs baseline periods were 1.17 for iodophor-CHG (raw rate: 5.0 vs 4.3/1000 ICU-attributable days) and 0.99 for mupirocin-CHG (raw rate: 4.1 vs 4.0/1000 ICU-attributable days) (HR difference in differences significantly lower by 18.4% [95% CI, 10.7%-26.6%] for mupirocin-CHG, P < .001). For MRSA clinical cultures, HRs were 1.13 for iodophor-CHG (raw rate: 2.3 vs 2.1/1000 ICU-attributable days) and 0.99 for mupirocin-CHG (raw rate: 2.0 vs 2.0/1000 ICU-attributable days) (HR difference in differences significantly lower by 14.1% [95% CI, 3.7%-25.5%] for mupirocin-CHG, P = .007). For all-pathogen bloodstream infections, HRs were 1.00 (2.7 vs 2.7/1000) for iodophor-CHG and 1.01 (2.6 vs 2.6/1000) for mupirocin-CHG (nonsignificant HR difference in differences, -0.9% [95% CI, -9.0% to 8.0%]; P = .84). Compared with the 2009-2011 trial, the 30-day relative reduction in hazards in the mupirocin-CHG group relative to no decolonization (2009-2011 trial) were as follows: S aureus clinical cultures (current trial: 48.1% [95% CI, 35.6%-60.1%]; 2009-2011 trial: 58.8% [95% CI, 47.5%-70.7%]) and bloodstream infection rates (current trial: 70.4% [95% CI, 62.9%-77.8%]; 2009-2011 trial: 60.1% [95% CI, 49.1%-70.7%]). Conclusions and Relevance: Nasal iodophor antiseptic did not meet criteria to be considered noninferior to nasal mupirocin antibiotic for the outcome of S aureus clinical cultures in adult ICU patients in the context of daily CHG bathing. In addition, the results were consistent with nasal iodophor being inferior to nasal mupirocin. Trial Registration: ClinicalTrials.gov Identifier: NCT03140423.


Asunto(s)
Antiinfecciosos , Baños , Clorhexidina , Yodóforos , Mupirocina , Sepsis , Infecciones Estafilocócicas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Administración Intranasal , Antibacterianos/uso terapéutico , Antiinfecciosos/administración & dosificación , Antiinfecciosos/uso terapéutico , Antiinfecciosos Locales/uso terapéutico , Baños/métodos , Clorhexidina/administración & dosificación , Clorhexidina/uso terapéutico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Unidades de Cuidados Intensivos/estadística & datos numéricos , Yodóforos/administración & dosificación , Yodóforos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Mupirocina/administración & dosificación , Mupirocina/uso terapéutico , Ensayos Clínicos Pragmáticos como Asunto , Sepsis/epidemiología , Sepsis/microbiología , Sepsis/prevención & control , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/aislamiento & purificación , Estados Unidos/epidemiología
4.
JAMA Netw Open ; 6(8): e2329441, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639273

RESUMEN

Importance: Characterizing the scale and factors associated with hospital-onset SARS-CoV-2 infections could help inform hospital and public health policies regarding prevention and surveillance needs for these infections. Objective: To evaluate associations of hospital-onset SARS-CoV-2 infection rates with different periods of the COVID-19 pandemic, hospital characteristics, and testing practices. Design, Setting, and Participants: This cohort study of US hospitals reporting SARS-CoV-2 testing data in the PINC AI Healthcare Database COVID-19 special release files was conducted from July 2020 through June 2022. Data were collected from hospitals that reported at least 1 SARS-CoV-2 reverse transcription-polymerase chain reaction or antigen test during hospitalizations discharged that month. For each hospital-month where the hospital reported sufficient data, all hospitalizations discharged in that month were included in the cohort. SARS-CoV-2 viral tests and results reported in the microbiology files for all hospitalizations in the study period by discharge month were identified. Data analysis was conducted from September 2022 to March 2023. Exposure: Hospitalizations discharged in an included hospital-month. Main Outcomes and Measures: Multivariable generalized estimating equation negative-binomial regression models were used to assess associations of monthly rates of hospital-onset SARS-CoV-2 infections per 1000 patient-days (defined as a first positive SARS-CoV-2 test during after hospitalization day 7) with the phase of the pandemic (defined as the predominant SARS-CoV-2 variant in circulation), admission testing rates, and hospital characteristics (hospital bed size, teaching status, urban vs rural designation, Census region, and patient distribution variables). Results: A total of 5687 hospital-months from 288 distinct hospitals were included, which contributed 4 421 268 hospitalization records. Among 171 564 hospitalizations with a positive SARS-CoV-2 test, 7591 (4.4%) were found to be hospital onset and 6455 (3.8%) were indeterminate onset. The mean monthly hospital-onset infection rate per 1000 patient-days was 0.27 (95 CI, 0.26-0.29). Hospital-onset infections occurred in 2217 of 5687 hospital-months (39.0%). The monthly percentage of discharged patients tested for SARS-CoV-2 at admission varied; 1673 hospital-months (29.4%) had less than 25% of hospitalizations tested at admission; 2199 hospital-months (38.7%) had 25% to 50% of all hospitalizations tested, and 1815 hospital months (31.9%) had more than 50% of all hospitalizations tested at admission. Postadmission testing rates and community-onset infection rates increased with admission testing rates. In multivariable models restricted to hospital-months testing at least 25% of hospitalizations at admission, a 10% increase in community-onset SARS-CoV-2 infection rate was associated with a 178% increase in the hospital-onset infection rate (rate ratio, 2.78; 95% CI, 2.52-3.07). Additionally, the phase of the COVID-19 pandemic, the admission testing rate, Census region, and bed size were all significantly associated with hospital-onset SARS-CoV-2 infection rates. Conclusions and Relevance: In this cohort study of hospitals reporting SARS-CoV-2 infections, there was an increase of hospital-onset SARS-CoV-2 infections when community-onset infections were higher, indicating a need for ongoing and enhanced surveillance and prevention efforts to reduce in-hospital transmission of SARS-CoV-2 infections, particularly when community-incidence of SARS-CoV-2 infections is high.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Estudios de Cohortes , Pandemias , Hospitales , Infección Hospitalaria/diagnóstico , Infección Hospitalaria/epidemiología
5.
J Am Med Dir Assoc ; 24(5): 735.e1-735.e9, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996876

RESUMEN

OBJECTIVES: The Centers for Disease Control and Prevention (CDC) recommends implementing Enhanced Barrier Precautions (EBP) for all nursing home (NH) residents known to be colonized with targeted multidrug-resistant organisms (MDROs), wounds, or medical devices. Differences in health care personnel (HCP) and resident interactions between units may affect risk of acquiring and transmitting MDROs, affecting EBP implementation. We studied HCP-resident interactions across a variety of NHs to characterize MDRO transmission opportunities. DESIGN: 2 cross-sectional visits. SETTING AND PARTICIPANTS: Four CDC Epicenter sites and CDC Emerging Infection Program sites in 7 states recruited NHs with a mix of unit care types (≥30 beds or ≥2 units). HCP were observed providing resident care. METHODS: Room-based observations and HCP interviews assessed HCP-resident interactions, care type provided, and equipment use. Observations and interviews were conducted for 7-8 hours in 3-6-month intervals per unit. Chart reviews collected deidentified resident demographics and MDRO risk factors (eg, indwelling devices, pressure injuries, and antibiotic use). RESULTS: We recruited 25 NHs (49 units) with no loss to follow-up, conducted 2540 room-based observations (total duration: 405 hours), and 924 HCP interviews. HCP averaged 2.5 interactions per resident per hour (long-term care units) to 3.4 per resident per hour (ventilator care units). Nurses provided care to more residents (n = 12) than certified nursing assistants (CNAs) and respiratory therapists (RTs) (CNA: 9.8 and RT: 9) but nurses performed significantly fewer task types per interaction compared to CNAs (incidence rate ratio (IRR): 0.61, P < .05). Short-stay (IRR: 0.89) and ventilator-capable (IRR: 0.94) units had less varied care compared with long-term care units (P < .05), although HCP visited residents in these units at similar rates. CONCLUSIONS AND IMPLICATIONS: Resident-HCP interaction rates are similar across NH unit types, differing primarily in types of care provided. Current and future interventions such as EBP, care bundling, or targeted infection prevention education should consider unit-specific HCP-resident interaction patterns.


Asunto(s)
Control de Infecciones , Casas de Salud , Humanos , Estudios Transversales , Personal de Salud , Antibacterianos
6.
J Infect Dis ; 227(7): 907-916, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36723871

RESUMEN

BACKGROUND: Descriptions of changes in invasive bacterial disease (IBD) epidemiology during the coronavirus disease 2019 (COVID-19) pandemic in the United States are limited. METHODS: We investigated changes in the incidence of IBD due to Streptococcus pneumoniae, Haemophilus influenzae, group A Streptococcus (GAS), and group B Streptococcus (GBS). We defined the COVID-19 pandemic period as 1 March to 31 December 2020. We compared observed IBD incidences during the pandemic to expected incidences, consistent with January 2014 to February 2020 trends. We conducted secondary analysis of a health care database to assess changes in testing by blood and cerebrospinal fluid (CSF) culture during the pandemic. RESULTS: Compared with expected incidences, the observed incidences of IBD due to S. pneumoniae, H. influenzae, GAS, and GBS were 58%, 60%, 28%, and 12% lower during the pandemic period of 2020, respectively. Declines from expected incidences corresponded closely with implementation of COVID-19-associated nonpharmaceutical interventions (NPIs). Significant declines were observed across all age and race groups, and surveillance sites for S. pneumoniae and H. influenzae. Blood and CSF culture testing rates during the pandemic were comparable to previous years. CONCLUSIONS: NPIs likely contributed to the decline in IBD incidence in the United States in 2020; observed declines were unlikely to be driven by reductions in testing.


Asunto(s)
Infecciones Bacterianas , COVID-19 , Estados Unidos/epidemiología , Humanos , Lactante , Incidencia , Pandemias , COVID-19/epidemiología , Streptococcus pneumoniae , Haemophilus influenzae , Streptococcus agalactiae
7.
Infect Control Hosp Epidemiol ; 44(2): 238-245, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35586888

RESUMEN

OBJECTIVES: The coronavirus disease 2019 pandemic caused substantial changes to healthcare delivery and antibiotic prescribing beginning in March 2020. To assess pandemic impact on Clostridioides difficile infection (CDI) rates, we described patients and trends in facility-level incidence, testing rates, and percent positivity during 2019-2020 in a large cohort of US hospitals. METHODS: We estimated and compared rates of community-onset CDI (CO-CDI) per 10,000 discharges, hospital-onset CDI (HO-CDI) per 10,000 patient days, and C. difficile testing rates per 10,000 discharges in 2019 and 2020. We calculated percent positivity as the number of inpatients diagnosed with CDI over the total number of discharges with a test for C. difficile. We used an interrupted time series (ITS) design with negative binomial and logistic regression models to describe level and trend changes in rates and percent positivity before and after March 2020. RESULTS: In pairwise comparisons, overall CO-CDI rates decreased from 20.0 to 15.8 between 2019 and 2020 (P < .0001). HO-CDI rates did not change. Using ITS, we detected decreasing monthly trends in CO-CDI (-1% per month, P = .0036) and HO-CDI incidence (-1% per month, P < .0001) during the baseline period, prior to the COVID-19 pandemic declaration. We detected no change in monthly trends for CO-CDI or HO-CDI incidence or percent positivity after March 2020 compared with the baseline period. CONCLUSIONS: While there was a slight downward trajectory in CDI trends prior to March 2020, no significant change in CDI trends occurred during the COVID-19 pandemic despite changes in infection control practices, antibiotic use, and healthcare delivery.


Asunto(s)
COVID-19 , Clostridioides difficile , Infecciones por Clostridium , Infección Hospitalaria , Humanos , Infección Hospitalaria/epidemiología , Infección Hospitalaria/tratamiento farmacológico , Pandemias , COVID-19/epidemiología , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/tratamiento farmacológico , Hospitales , Antibacterianos/uso terapéutico
9.
MMWR recomm. rep ; 70(45): 1579-1583, Nov. 12, 2022. tab
Artículo en Inglés | BIGG - guías GRADE | ID: biblio-1397007

RESUMEN

The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle­formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. On August 23, 2021, the Food and Drug Administration (FDA) approved a Biologics License Application (BLA) for use of the Pfizer-BioNTech COVID-19 vaccine, marketed as Comirnaty (Pfizer, Inc.), in persons aged ≥16 years (1). The Pfizer-BioNTech COVID-19 vaccine is also recommended for adolescents aged 12­15 years under an Emergency Use Authorization (EUA) (1). All persons aged ≥12 years are recommended to receive 2 doses (30 µg, 0.3 mL each), administered 3 weeks apart (2,3). As of November 2, 2021, approximately 248 million doses of the Pfizer-BioNTech COVID-19 vaccine had been administered to persons aged ≥12 years in the United States.* On October 29, 2021, FDA issued an EUA amendment for a new formulation of Pfizer-BioNTech COVID-19 vaccine for use in children aged 5­11 years, administered as 2 doses (10 µg, 0.2 mL each), 3 weeks apart (Table) (1). On November 2, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation† for use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5­11 years for the prevention of COVID-19. To guide its deliberations regarding recommendations for the vaccine, ACIP used the Evidence to Recommendation (EtR) Framework§ and incorporated a Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.¶ The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5­11 years under an EUA is interim and will be updated as additional information becomes available. The Pfizer-BioNTech COVID-19 vaccine has high efficacy (>90%) against COVID-19 in children aged 5­11 years, and ACIP determined benefits outweigh risks for vaccination. Vaccination is important to protect children against COVID-19 and reduce community transmission of SARS-CoV-2.


Asunto(s)
Humanos , Preescolar , Niño , Programas de Inmunización/normas , COVID-19/prevención & control , Vacuna BNT162/uso terapéutico , Vacuna BNT162/inmunología
10.
Open Forum Infect Dis ; 9(9): ofac422, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36072699

RESUMEN

Among persons with an initial Clostridioides difficile infection (CDI) across 10 US sites in 2018 compared with 2013, 18.3% versus 21.1% had ≥1 recurrent CDI (rCDI) within 180 days. We observed a 16% lower adjusted risk of rCDI in 2018 versus 2013 (P < .0001).

11.
J Hosp Med ; 17(12): 984-989, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36039477

RESUMEN

The disruptions of the coronavirus disease 2019 (COVID-19) pandemic impacted the delivery and utilization of healthcare services with potential long-term implications for population health and the hospital workforce. Using electronic health record data from over 700 US acute care hospitals, we documented changes in admissions to hospital service areas (inpatient, observation, emergency room [ER], and same-day surgery) during 2019-2020 and examined whether surges of COVID-19 hospitalizations corresponded with increased inpatient disease severity and death rate. We found that in 2020, hospitalizations declined by 50% in April, with greatest declines occurring in same-day surgery (-73%). The youngest patients (0-17) experienced largest declines in ER, observation, and same-day surgery admissions; inpatient admissions declined the most among the oldest patients (65+). Infectious disease admissions increased by 52%. The monthly measures of inpatient case mix index, length of stay, and non-COVID death rate were higher in all months in 2020 compared with respective months in 2019.


Asunto(s)
COVID-19 , Pandemias , Humanos , Hospitalización , Servicio de Urgencia en Hospital , Hospitales
12.
Clin Infect Dis ; 75(Suppl 2): S294-S297, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35779273

RESUMEN

We described bacterial/fungal coinfections and antibiotic-resistant infections among inpatients with a diagnosis of coronavirus disease 2019 (COVID-19) and compared findings in those with a diagnosis of influenza like illness. Less than 10% of inpatients with COVID-19 had bacterial/fungal coinfection. Longer lengths of stay, critical care stay, and mechanical ventilation contribute to increased incidence of hospital-onset infections among inpatients with COVID-19.


Asunto(s)
COVID-19 , Coinfección , Antibacterianos/uso terapéutico , Coinfección/epidemiología , Hospitales , Humanos , Pacientes Internos , SARS-CoV-2 , Estados Unidos
13.
Clin Infect Dis ; 75(Suppl 2): S225-S230, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35724112

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron variant has been hypothesized to exhibit faster clearance (time from peak viral concentration to clearance of acute infection), decreased sensitivity of antigen tests, and increased immune escape (the ability of the variant to evade immunity conferred by past infection or vaccination) compared to prior variants. These factors necessitate reevaluation of prevention and control strategies, particularly in high-risk, congregate settings like nursing homes that have been heavily impacted by other coronavirus disease 2019 (COVID-19) variants. We used a simple model representing individual-level viral shedding dynamics to estimate the optimal strategy for testing nursing home healthcare personnel and quantify potential reduction in transmission of COVID-19. This provides a framework for prospectively evaluating testing strategies in emerging variant scenarios when data are limited. We find that case-initiated testing prevents 38% of transmission within a facility if implemented within a day of an index case testing positive, and screening testing strategies could prevent 30% to 78% of transmission within a facility if implemented daily, depending on test sensitivity.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Atención a la Salud , Humanos , Casas de Salud
15.
PLoS One ; 17(2): e0264344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35226689

RESUMEN

Mathematical models are used to gauge the impact of interventions for healthcare-associated infections. As with any analytic method, such models require many assumptions. Two common assumptions are that asymptomatically colonized individuals are more likely to be hospitalized and that they spend longer in the hospital per admission because of their colonization status. These assumptions have no biological basis and could impact the estimated effects of interventions in unintended ways. Therefore, we developed a model of methicillin-resistant Staphylococcus aureus transmission to explicitly evaluate the impact of these assumptions. We found that assuming that asymptomatically colonized individuals were more likely to be admitted to the hospital or spend longer in the hospital than uncolonized individuals biased results compared to a more realistic model that did not make either assumption. Results were heavily biased when estimating the impact of an intervention that directly reduced transmission in a hospital. In contrast, results were moderately biased when estimating the impact of an intervention that decolonized hospital patients. Our findings can inform choices modelers face when constructing models of healthcare-associated infection interventions and thereby improve their validity.


Asunto(s)
Infección Hospitalaria , Atención a la Salud , Staphylococcus aureus Resistente a Meticilina , Modelos Biológicos , Infecciones Estafilocócicas , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Infección Hospitalaria/transmisión , Humanos , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/transmisión
16.
Clin Infect Dis ; 75(7): 1217-1223, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35100614

RESUMEN

BACKGROUND: Multidrug-resistant organisms (MDROs) frequently contaminate hospital environments. We performed a multicenter, cluster-randomized, crossover trial of 2 methods for monitoring of terminal cleaning effectiveness. METHODS: Six intensive care units (ICUs) at 3 medical centers received both interventions sequentially, in randomized order. Ten surfaces were surveyed each in 5 rooms weekly, after terminal cleaning, with adenosine triphosphate (ATP) monitoring or an ultraviolet fluorescent marker (UV/F). Results were delivered to environmental services staff in real time with failing surfaces recleaned. We measured monthly rates of MDRO infection or colonization, including methicillin-resistant Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus, and MDR gram-negative bacilli (MDR-GNB) during a 12-month baseline period and sequential 6-month intervention periods, separated by a 2-month washout. Primary analysis compared only the randomized intervention periods, whereas secondary analysis included the baseline. RESULTS: The ATP method was associated with a reduction in incidence rate of MDRO infection or colonization compared with the UV/F period (incidence rate ratio [IRR] 0.876; 95% confidence interval [CI], 0.807-0.951; P = .002). Including the baseline period, the ATP method was associated with reduced infection with MDROs (IRR 0.924; 95% CI, 0.855-0.998; P = .04), and MDR-GNB infection or colonization (IRR 0.856; 95% CI, 0.825-0.887; P < .001). The UV/F intervention was not associated with a statistically significant impact on these outcomes. Room turnaround time increased by a median of 1 minute with the ATP intervention and 4.5 minutes with UV/F compared with baseline. CONCLUSIONS: Intensive monitoring of ICU terminal room cleaning with an ATP modality is associated with a reduction of MDRO infection and colonization.


Asunto(s)
Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Enterococos Resistentes a la Vancomicina , Adenosina Trifosfato , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Humanos , Unidades de Cuidados Intensivos , Vancomicina
17.
PLoS One ; 17(1): e0261588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025906

RESUMEN

Results from sampling healthcare surfaces for pathogens are difficult to interpret without understanding the factors that influence pathogen detection. We investigated the recovery of four healthcare-associated pathogens from three common surface materials, and how a body fluid simulant (artificial test soil, ATS), deposition method, and contamination levels influence the percent of organisms recovered (%R). Known quantities of carbapenemase-producing KPC+ Klebsiella pneumoniae (KPC), Acinetobacter baumannii, vancomycin-resistant Enterococcus faecalis, and Clostridioides difficile spores (CD) were suspended in Butterfield's buffer or ATS, deposited on 323cm2 steel, plastic, and laminate surfaces, allowed to dry 1h, then sampled with a cellulose sponge wipe. Bacteria were eluted, cultured, CFU counted and %R determined relative to the inoculum. The %R varied by organism, from <1% (KPC) to almost 60% (CD) and was more dependent upon the organism's characteristics and presence of ATS than on surface type. KPC persistence as determined by culture also declined by >1 log10 within the 60 min drying time. For all organisms, the %R was significantly greater if suspended in ATS than if suspended in Butterfield's buffer (p<0.05), and for most organisms the %R was not significantly different when sampled from any of the three surfaces. Organisms deposited in multiple droplets were recovered at equal or higher %R than if spread evenly on the surface. This work assists in interpreting data collected while investigating a healthcare infection outbreak or while conducting infection intervention studies.


Asunto(s)
Bacterias/aislamiento & purificación , Vendajes/microbiología , Celulosa/química , Manejo de Especímenes/métodos , Acinetobacter baumannii/aislamiento & purificación , Clostridioides difficile/aislamiento & purificación , Humanos , Klebsiella pneumoniae/aislamiento & purificación , Plásticos/química , Acero/química , Propiedades de Superficie , Enterococos Resistentes a la Vancomicina/aislamiento & purificación
18.
Infect Control Hosp Epidemiol ; 43(8): 1067-1069, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33958010

RESUMEN

Previously reported associations between hospital-level antibiotic use and hospital-onset Clostridioides difficile infection (HO-CDI) were reexamined using 2012-2018 data from a new cohort of US acute-care hospitals. This analysis revealed significant positive associations between total, third-generation, and fourth-generation cephalosporin, fluoroquinolone, carbapenem, and piperacillin-tazobactam use and HO-CDI rates, confirming previous findings.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Infección Hospitalaria , Antibacterianos/uso terapéutico , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/epidemiología , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Hospitales , Humanos
19.
Clin Infect Dis ; 74(3): 525-528, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33988220

RESUMEN

Replication-competent virus has not been detected in individuals with mild to moderate coronavirus disease 2019 (COVID-19) more than 10 days after symptom onset. It is unknown whether these findings apply to nursing home residents. Of 273 specimens collected from nursing home residents >10 days from the initial positive test, none were culture positive.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Casas de Salud , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa
20.
MMWR Morb Mortal Wkly Rep ; 70(45): 1579-1583, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758012

RESUMEN

The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. On August 23, 2021, the Food and Drug Administration (FDA) approved a Biologics License Application (BLA) for use of the Pfizer-BioNTech COVID-19 vaccine, marketed as Comirnaty (Pfizer, Inc.), in persons aged ≥16 years (1). The Pfizer-BioNTech COVID-19 vaccine is also recommended for adolescents aged 12-15 years under an Emergency Use Authorization (EUA) (1). All persons aged ≥12 years are recommended to receive 2 doses (30 µg, 0.3 mL each), administered 3 weeks apart (2,3). As of November 2, 2021, approximately 248 million doses of the Pfizer-BioNTech COVID-19 vaccine had been administered to persons aged ≥12 years in the United States.* On October 29, 2021, FDA issued an EUA amendment for a new formulation of Pfizer-BioNTech COVID-19 vaccine for use in children aged 5-11 years, administered as 2 doses (10 µg, 0.2 mL each), 3 weeks apart (Table) (1). On November 2, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation† for use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years for the prevention of COVID-19. To guide its deliberations regarding recommendations for the vaccine, ACIP used the Evidence to Recommendation (EtR) Framework§ and incorporated a Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.¶ The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years under an EUA is interim and will be updated as additional information becomes available. The Pfizer-BioNTech COVID-19 vaccine has high efficacy (>90%) against COVID-19 in children aged 5-11 years, and ACIP determined benefits outweigh risks for vaccination. Vaccination is important to protect children against COVID-19 and reduce community transmission of SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Guías de Práctica Clínica como Asunto , Comités Consultivos , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Niño , Aprobación de Drogas , Humanos , Inmunización/normas , Esquemas de Inmunización , Estados Unidos/epidemiología , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA