Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750793

RESUMEN

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Humanos , Biología Computacional/métodos , Cristalografía por Rayos X , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Motivos de Unión al ARN/genética
2.
Trials ; 25(1): 321, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750586

RESUMEN

BACKGROUND: Physiotherapy interventions effectively improved fatigue and physical functioning in non-COVID patients with myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). There is a research gap on the effectiveness of physiotherapy interventions versus drug management on ME/CFS in post-COVID-19 conditions (PCC). METHODS: We planned a three-arm prospective randomized control trial on 135 PCC cases with ME/CFS who are diagnosed between 20 November 2023 and 20 May 2024 from a population-based cohort. The study aims to determine the effectiveness of physiotherapy interventions as adapted physical activity and therapeutic exercise (APTE) provided in institution-based care versus telemedicine compared with drug management (DM). Participants will be assigned to three groups with the concealed location process and block randomization with an enrollment ratio of 1:1:1. The post-treatment evaluation will be employed after 2 months of interventions, and follow-up will be taken after 6 months post-intervention. The Chalder fatigue scale will measure the primary outcome of fatigue. SF-36 and the disability-adjusted life years (DALYs) will measure the secondary outcome of physical functioning and episodic disability. DISCUSSION: This study will address the research gap to determine the appropriate approach of physiotherapy or drug management for ME/CFS in PCC cases. The future direction of the study will contribute to developing evidence-based practice in post-COVID-19 condition rehabilitation. TRIAL REGISTRATION: The trial is registered prospectively from a primary Clinical Trial Registry side of WHO CTRI/2024/01/061987. Registered on 29 January 2024.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Modalidades de Fisioterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/terapia , Síndrome de Fatiga Crónica/terapia , Síndrome de Fatiga Crónica/fisiopatología , Estudios Prospectivos , Resultado del Tratamiento , Fatiga/terapia , Evaluación de la Discapacidad , Terapia por Ejercicio/métodos , Telemedicina/métodos , Adulto
3.
Nucleic Acids Res ; 52(5): 2416-2433, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38224455

RESUMEN

Mammalian polynucleotide kinase 3'-phosphatase (PNKP), a DNA end-processing enzyme with 3'-phosphatase and 5'-kinase activities, is involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes. Here we report that PNKP is acetylated at K142 (AcK142) by p300 constitutively but at K226 (AcK226) by CBP, only after DSB induction. Co-immunoprecipitation analysis using AcK142 or AcK226 PNKP-specific antibodies showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP with DSBR proteins. Despite the modest effect of acetylation on PNKP's enzymatic activity in vitro, cells expressing non-acetylable PNKP (K142R or K226R) accumulated DNA damage in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This is consistent with the reported degradation of CBP, but not p300, in HD cells. Moreover, transcribed genomes of HD cells progressively accumulated DSBs. Chromatin-immunoprecipitation analysis demonstrated the association of Ac-PNKP with the transcribed genes, consistent with PNKP's role in transcription-coupled repair. Thus, our findings demonstrate that acetylation at two lysine residues, located in different domains of PNKP, regulates its distinct role in BER/SSBR versus DSBR.


Asunto(s)
Enzimas Reparadoras del ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Humanos , Ratones , Acetilación , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Mamíferos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Polinucleótido 5'-Hidroxil-Quinasa/genética
4.
Nat Commun ; 14(1): 8169, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071370

RESUMEN

SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.


Asunto(s)
COVID-19 , ADN Glicosilasas , Cricetinae , Animales , Humanos , COVID-19/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genoma , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
5.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762489

RESUMEN

Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.


Asunto(s)
Medicina , Humanos , Animales , Ratones , Ratones Noqueados , Envejecimiento , Reparación del ADN , Biología
6.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645927

RESUMEN

Mammalian polynucleotide kinase 3'-phosphatase (PNKP) is a dual-function DNA end-processing enzyme with 3'-phosphatase and 5'-kinase activities, which generate 3'-OH and 5'-phosphate termini respectively, as substrates for DNA polymerase and DNA ligase to complete DNA repair. PNKP is thus involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes, which involve distinct sets of proteins. In this study, we report that PNKP is acetylated at two lysine (K142 and K226) residues. While K142 (AcK142) is constitutively acetylated by p300, CBP acetylates K226 (AcK226) only after DSB induction. Co-immunoprecipitation analysis using antibodies specific for PNKP peptides containing AcK142 or AcK226 of PNKP showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP only with DSBR proteins. Although acetylation at these residues did not significantly affect the enzymatic activity of PNKP in vitro, cells expressing nonacetylable PNKP (K142R or K226R) accumulated DNA damage, specifically in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This observation is consistent with the reported degradation of CBP but not p300 in HD cells. Moreover, genomes of HD cells progressively accumulated DSBs specifically in the transcribed genes. Chromatin-immunoprecipitation analysis using anti-AcK142 or anti-AcK226 antibodies demonstrated an association of Ac-PNKP with the transcribed genes, consistent with PNKP's role in transcription-coupled repair. Thus, our findings collectively demonstrate that acetylation at two lysine residues located in different domains of PNKP regulates its functionally distinct role in BER/SSBR vs. DSBR.

7.
Methods Mol Biol ; 2701: 149-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574480

RESUMEN

R loops (DNA-RNA hybrid) are three-stranded nucleic acid structures that comprise of template DNA strand hybridized with the nascent RNA leaving the displaced non-template strand. Although a programmed R loop formation can serve as powerful regulators of gene expression, these structures can also turn into major sources of genomic instability and contribute to the development of diseases. Therefore, understanding how cells prevent the deleterious consequences of R loops yet allow R loop formation to participate in various physiological processes will help to understand how their homeostasis is maintained. Detection and quantitative measurements of R loops are critical that largely relied on S9.6 antibody. Immunofluorescence methods are frequently used to localize and quantify R loops in the cell but they require specialized tools for analysis and relatively expensive; therefore, they are not always useful for initial assessments of R loop accumulation. Here, we describe an improved slot blot protocol to detect and estimate R loops and show its sensitivity and specificity using the S9.6 antibody. Since specific factors protecting cells from harmful R loop accumulation are expanding, this protocol can be used to determine R loop accumulation in research and clinical settings.


Asunto(s)
Estructuras R-Loop , ARN , Humanos , Conformación de Ácido Nucleico , ARN/genética , ADN/genética , Anticuerpos/química , Inestabilidad Genómica
8.
J Biol Chem ; 299(5): 104714, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37061005

RESUMEN

Polynucleotide kinase 3'-phosphatase (PNKP), an essential DNA end-processing enzyme in mammals with 3'-phosphatase and 5'-kinase activities, plays a pivotal role in multiple DNA repair pathways. Its functional deficiency has been etiologically linked to various neurological disorders. Recent reports have shown that mutation at a conserved glutamine (Gln) in PNKP leads to late-onset ataxia with oculomotor apraxia type 4 (AOA4) in humans and embryonic lethality in pigs. However, the molecular mechanism underlying such phenotypes remains elusive. Here, we report that the enzymatic activities of the mutant versus WT PNKP are comparable; however, cells expressing mutant PNKP and peripheral blood mononuclear cells (PBMCs) of AOA4 patients showed a significant amount of DNA double-strand break accumulation and consequent activation of the DNA damage response. Further investigation revealed that the nuclear localization of mutant PNKP is severely abrogated, and the mutant proteins remain primarily in the cytoplasm. Western blot analysis of AOA4 patient-derived PBMCs also revealed the presence of mutated PNKP predominantly in the cytoplasm. To understand the molecular determinants, we identified that mutation at a conserved Gln residue impedes the interaction of PNKP with importin alpha but not with importin beta, two highly conserved proteins that mediate the import of proteins from the cytoplasm into the nucleus. Collectively, our data suggest that the absence of PNKP in the nucleus leads to constant activation of the DNA damage response due to persistent accumulation of double-strand breaks in the mutant cells, triggering death of vulnerable brain cells-a potential cause of neurodegeneration in AOA4 patients.


Asunto(s)
Enzimas Reparadoras del ADN , Leucocitos Mononucleares , Fosfotransferasas (Aceptor de Grupo Alcohol) , Ataxias Espinocerebelosas , Humanos , ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ataxias Espinocerebelosas/genética
9.
J Biol Chem ; 299(3): 102991, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758800

RESUMEN

A growing body of evidence indicates that RNA plays a critical role in orchestrating DNA double-strand break repair (DSBR). Recently, we showed that homologous nascent RNA can be used as a template for error-free repair of double-strand breaks (DSBs) in the transcribed genome and to restore the missing sequence at the break site via the transcription-coupled classical nonhomologous end-joining (TC-NHEJ) pathway. TC-NHEJ is a complex multistep process in which a reverse transcriptase (RT) is essential for synthesizing the DNA strand from template RNA. However, the identity of the RT involved in the TC-NHEJ pathway remained unknown. Here, we report that DNA polymerase eta (Pol η), known to possess RT activity, plays a critical role in TC-NHEJ. We found that Pol η forms a multiprotein complex with RNAP II and other TC-NHEJ factors, while also associating with nascent RNA. Moreover, purified Pol η, along with DSBR proteins PNKP, XRCC4, and Ligase IV can fully repair RNA templated 3'-phosphate-containing gapped DNA substrate. In addition, we demonstrate here that Pol η deficiency leads to accumulation of R-loops and persistent strand breaks in the transcribed genes. Finally, we determined that, in Pol η depleted but not in control cells, TC-NHEJ-mediated repair was severely abrogated when a reporter plasmid containing a DSB with several nucleotide deletion within the E. coli lacZ gene was introduced for repair in lacZ-expressing mammalian cells. Thus, our data strongly suggest that RT activity of Pol η is required in error-free DSBR.


Asunto(s)
Roturas del ADN de Doble Cadena , Escherichia coli , Animales , Humanos , Escherichia coli/genética , Reparación del ADN , Reparación del ADN por Unión de Extremidades , ADN , ARN/genética , ADN Ligasa (ATP) , Mamíferos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enzimas Reparadoras del ADN/genética
10.
Front Public Health ; 11: 1269444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222087

RESUMEN

Musculoskeletal disorders are debilitating conditions that significantly impact the state of health, especially in older people. The study, which employed a cross-sectional design and practical sampling, included 206 participants among them 124 (62.2%) were men and 82 (39.8%) were women, from all over Bangladesh with musculoskeletal issues of varying severity and impact. The mean age of the participants was 64.9 (SD 4.3). The study was carried out between January and June of 2022. The majority of participants experienced musculoskeletal pain. Back pain was the most commonly complained of symptom among the participants (74.9%). It was also common to have limited mobility as a result of arthritic change, which eventually affected daily activities like taking care of oneself. To improve the health of the older adult population, more studies must be conducted to identify the many factors that contribute to musculoskeletal issues. The development of effective prevention and rehabilitation programs must then be based on this knowledge.


Asunto(s)
Enfermedades Musculoesqueléticas , Calidad de Vida , Masculino , Humanos , Femenino , Anciano , Estudios Transversales , Bangladesh/epidemiología , Enfermedades Musculoesqueléticas/epidemiología , Enfermedades Musculoesqueléticas/prevención & control , Comorbilidad
11.
Environ Sci Technol ; 56(17): 12506-12516, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35900278

RESUMEN

Tobacco-specific nitrosamines (TSNAs) are emitted during smoking and form indoors by nitrosation of nicotine. Two of them, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are human carcinogens with No Significant Risk Levels (NSRLs) of 500 and 14 ng day-1, respectively. Another TSNA, 4-(methylnitrosamino)-4-(3-pyridyl) butanal (NNA), shows genotoxic and mutagenic activity in vitro. Here, we present additional evidence of genotoxicity of NNA, an assessment of TSNA dermal uptake, and predicted exposure risks through different pathways. Dermal uptake was investigated by evaluating the penetration of NNK and nicotine through mice skin. Comparable mouse urine metabolite profiles suggested that both compounds were absorbed and metabolized via similar mechanisms. We then investigated the effects of skin constituents on the reaction of adsorbed nicotine with nitrous acid (epidermal chemistry). Higher TSNA concentrations were formed on cellulose and cotton substrates that were precoated with human skin oils and sweat compared to clean substrates. These results were combined with reported air, dust, and surface concentrations to assess NNK intake. Five different exposure pathways exceeded the NSRL under realistic scenarios, including inhalation, dust ingestion, direct dermal contact, gas-to-skin deposition, and epidermal nitrosation of nicotine. These results illustrate potential long-term health risks for nonsmokers in homes contaminated with thirdhand tobacco smoke.


Asunto(s)
Nicotiana , Nitrosaminas , Animales , Carcinógenos/toxicidad , Polvo , Ingestión de Alimentos , Humanos , Ratones , Nicotina/química , Nitrosaminas/química , Nicotiana/química , Nicotiana/metabolismo
12.
Res Sq ; 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35665009

RESUMEN

Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.

13.
PLoS One ; 17(5): e0267839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35576221

RESUMEN

Thirdhand smoke (THS) is a newly described health hazard composed of toxicants, mutagens and carcinogens, including nicotine-derived tobacco specific nitrosamines (TSNAs), one of which is 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA). Although TSNAs are generally potent carcinogens, the risk of NNA, which is specific to THS, is poorly understood. We recently reported that THS exposure-induced adverse impact on DNA replication and transcription with implications in the development of cancer and other diseases. Here, we investigated the role of NNA in THS exposure-induced harmful effects on fundamental cellular processes. We exposed cultured human lung epithelial BEAS-2B cells to NNA. The formation of DNA base damages was assessed by Long Amplicon QPCR (LA-QPCR); DNA double-strand breaks (DSBs) and NNA effects on replication and transcription by immunofluorescence (IF); and genomic instability by micronuclei (MN) formation. We found increased accumulation of oxidative DNA damage and DSBs as well as activation of DNA damage response pathway, after exposure of cells to NNA. Impaired S phase progression was also evident. Consistent with these results, we found increased MN formation, a marker of genomic instability, in NNA-exposed cells. Furthermore, ongoing RNA synthesis was significantly reduced by NNA exposure, however, RNA synthesis resumed fully after a 24h recovery period only in wild-type cells but not in those deficient in transcription-coupled nucleotide excision repair (TC-NER). Importantly, these cellular effects are common with the THS-exposure induced effects. Our findings suggest that NNA in THS could be a contributing factor for THS exposure-induced adverse health effect.


Asunto(s)
Nitrosaminas , Contaminación por Humo de Tabaco , Aldehídos , Carcinógenos/análisis , ADN , Daño del ADN , Inestabilidad Genómica , Humanos , Pulmón/metabolismo , Nicotina/análisis , Nitrosaminas/análisis , Nitrosaminas/toxicidad , Piridinas , ARN , Nicotiana/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/análisis
14.
Biophys J ; 120(15): 3152-3165, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34197805

RESUMEN

The replication transcription complex (RTC) from the virus SARS-CoV-2 is responsible for recognizing and processing RNA for two principal purposes. The RTC copies viral RNA for propagation into new virus and for ribosomal transcription of viral proteins. To accomplish these activities, the RTC mechanism must also conform to a large number of imperatives, including RNA over DNA base recognition, basepairing, distinguishing viral and host RNA, production of mRNA that conforms to host ribosome conventions, interfacing with error checking machinery, and evading host immune responses. In addition, the RTC will discontinuously transcribe specific sections of viral RNA to amplify certain proteins over others. Central to SARS-CoV-2 viability, the RTC is therefore dynamic and sophisticated. We have conducted a systematic structural investigation of three components that make up the RTC: Nsp7, Nsp8, and Nsp12 (also known as RNA-dependent RNA polymerase). We have solved high-resolution crystal structures of the Nsp7/8 complex, providing insight into the interaction between the proteins. We have used small-angle x-ray and neutron solution scattering (SAXS and SANS) on each component individually as pairs and higher-order complexes and with and without RNA. Using size exclusion chromatography and multiangle light scattering-coupled SAXS, we defined which combination of components forms transient or stable complexes. We used contrast-matching to mask specific complex-forming components to test whether components change conformation upon complexation. Altogether, we find that individual Nsp7, Nsp8, and Nsp12 structures vary based on whether other proteins in their complex are present. Combining our crystal structure, atomic coordinates reported elsewhere, SAXS, SANS, and other biophysical techniques, we provide greater insight into the RTC assembly, mechanism, and potential avenues for disruption of the complex and its functions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares , ARN Viral/genética , Dispersión del Ángulo Pequeño , Proteínas no Estructurales Virales , Replicación Viral , Difracción de Rayos X
15.
Prog Biophys Mol Biol ; 164: 72-80, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753087

RESUMEN

Cell survival largely depends on the faithful maintenance of genetic material since genomic DNA is constantly exposed to genotoxicants from both endogenous and exogenous sources. The evolutionarily conserved base excision repair (BER) pathway is critical for maintaining genome integrity by eliminating highly abundant and potentially mutagenic oxidized DNA base lesions. BER is a multistep process, which is initiated with recognition and excision of the DNA base lesion by a DNA glycosylase, followed by DNA end processing, gap filling and finally sealing of the nick. Besides genome maintenance by global BER, DNA glycosylases have been found to play additional roles, including preferential repair of oxidized lesions from transcribed genes, modulation of the immune response, participation in active DNA demethylation and maintenance of the mitochondrial genome. Central to these functions is the DNA glycosylase NEIL2. Its loss results in increased accumulation of oxidized base lesions in the transcribed genome, triggers an immune response and causes early neurodevelopmental defects, thus emphasizing the multitasking capabilities of this repair protein. Here we review the specialized functions of NEIL2 and discuss the consequences of its absence both in vitro and in vivo.


Asunto(s)
ADN Glicosilasas , Animales , ADN , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos
16.
Structure ; 29(1): 1-2, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417890

RESUMEN

The canonical DNA glycosylase role is global base damage repair but includes functions in epigenetic gene regulation, immune response modulation, replication, and transcription. In this issue of Structure, Eckenroth et al. (2020) present the NEIL2 glycosylase structure. Its catalytic domain flexibility differentiates it from most other glycosylases and suggests novel regulatory mechanisms.


Asunto(s)
ADN Glicosilasas , Animales , ADN , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(25): 14127-14138, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522879

RESUMEN

Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG's role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/química , Endonucleasas/química , Proteínas Nucleares/química , Mutación Puntual , Factores de Transcripción/química , Xerodermia Pigmentosa/genética , Sitios de Unión , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Estabilidad de Enzimas , Humanos , Simulación de Dinámica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Environ Mol Mutagen ; 61(6): 635-646, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32267018

RESUMEN

Thirdhand cigarette smoke (THS) is a newly described toxin that lingers in the indoor environment long after cigarettes have been extinguished. Emerging results from both cellular and animal model studies suggest that THS is a potential human health hazard. DNA damage derived from THS exposure could have genotoxic consequences that would lead to the development of diseases. However, THS exposure-induced interference with fundamental DNA transactions such as replication and transcription, and the role of DNA repair in ameliorating such effects, remain unexplored. Here, we found that THS exposure increased the percentage of cells in S-phase, suggesting impaired S-phase progression. Key DNA damage response proteins including RPA, ATR, ATM, CHK1, and BRCA1 were activated in lung cells exposed to THS, consistent with replication stress. In addition, THS exposure caused increased 53BP1 foci, indicating DNA double-strand break induction. Consistent with these results, we observed increased micronuclei formation, a marker of genomic instability, in THS-exposed cells. Exposure to THS also caused a significant increase in phosphorylated RNA Polymerase II engaged in transcription elongation, suggesting an increase in transcription-blocking lesions. In agreement with this conclusion, ongoing RNA synthesis was very significantly reduced by THS exposure. Loss of nucleotide excision repair exacerbated the reduction in RNA synthesis, suggesting that bulky DNA adducts formed by THS are blocks to transcription. The adverse impact on both replication and transcription supports genotoxic stress as a result of THS exposure, with important implications for both cancer and other diseases.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Daño del ADN/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Transcripción Genética/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Línea Celular , Replicación del ADN/efectos de los fármacos , Humanos , Pruebas de Micronúcleos , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205441

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Asunto(s)
Ataxina-3/genética , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Enfermedad de Machado-Joseph/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Ataxina-3/metabolismo , Encéfalo/patología , Línea Celular , Roturas del ADN de Doble Cadena , Modelos Animales de Enfermedad , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Masculino , Ratones , Persona de Mediana Edad , Mutación , Péptidos/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA