Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4878, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849362

RESUMEN

Synthetic micro/nanomotors have been extensively exploited over the past decade to achieve active transportation. This interest is a result of their broad range of potential applications, from environmental remediation to nanomedicine. Nevertheless, it still remains a challenge to build a fast-moving biodegradable polymeric nanomotor. Here we present a light-propelled nanomotor by introducing gold nanoparticles (Au NP) onto biodegradable bowl-shaped polymersomes (stomatocytes) via electrostatic and hydrogen bond interactions. These biodegradable nanomotors show controllable motion and remarkable velocities of up to 125 µm s-1. This unique behavior is explained via a thorough three-dimensional characterization of the nanomotor, particularly the size and the spatial distribution of Au NP, with cryogenic transmission electron microscopy (cryo-TEM) and cryo-electron tomography (cryo-ET). Our in-depth quantitative 3D analysis reveals that the motile features of these nanomotors are caused by the nonuniform distribution of Au NPs on the outer surface of the stomatocyte along the z-axial direction. Their excellent motile features are exploited for active cargo delivery into living cells. This study provides a new approach to develop robust, biodegradable soft nanomotors with application potential in biomedicine.

2.
J Control Release ; 372: 59-68, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38866242

RESUMEN

Antitumor agents often lack effective penetration and accumulation to achieve high therapeutic efficacy in treating solid tumors. Nanomotor-based nanomaterials offer a potential solution to address this obstacle. Among them, nitric oxide (NO) based nanomotors have garnered attention for their potential applications in nanomedicine. However, there widespread clinical adoption has been hindered by their complex preparation processes. To address this limitation, we have developed a NO-driven nanomotor utilizing a convenient and scalable nanogel preparation procedure. These nanomotors, loaded with the fluorescent probe / sonosensitizer chlorin e6 (Ce6), were specifically engineered for sonodynamic therapy. Through comprehensive in vitro investigations using both 2D and 3D cell models, as well as in vivo analysis of Ce6 fluorescent signal distribution in solid tumor models, we observed that the self-propulsion of these nanomotors significantly enhances cellular uptake and tumor penetration, particularly in solid tumors. This phenomenon enables efficient access to challenging tumor regions and, in some cases, results in complete tumor coverage. Notably, our nanomotors have demonstrated long-term in vivo biosafety. This study presents an effective approach to enhancing drug penetration and improving therapeutic efficacy in tumor treatment, with potential clinical relevance for future applications.

3.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38693874

RESUMEN

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Asunto(s)
Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , beta-Galactosidasa , Glucosa Oxidasa/química , Humanos , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Orgánulos/metabolismo , Colorantes Fluorescentes/química , Polímeros/química , Fluorescencia , Células HeLa , Mitocondrias/metabolismo
4.
Ther Adv Med Oncol ; 15: 17588359231189429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655205

RESUMEN

Background: Patient-reported outcomes (PROs) are increasingly becoming an important part of clinical trials as they are helpful in analyzing the safety and efficacy of treatment in chronic diseases like cancer. Objectives: We report PROs and health-related quality of life (HRQoL) with selpercatinib treatment among Chinese patients with rearranged in transfection (RET) fusion-positive non-small-cell lung cancer (NSCLC), RET fusion-positive thyroid cancer (TC), and RET-mutant medullary TC (MTC) as an exploratory analysis of the LIBRETTO-321 trial. Design: A total of 77 patients (47 RET fusion-positive NSCLC, 1 RET fusion-positive TC, and 29 RET-mutant MTC) were enrolled. Compliance for European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire-Core 30 (QLQ-C30) was 100% at baseline and >90% at each time point. Methods: PROs were assessed using the EORTC QLQ-C30, and a bowel diary assessment for MTC patients with baseline diarrhea using the Systemic Therapy-Induced Diarrhea Assessment Tool. Data were collected at pre-dose; every 8 weeks from cycle 3; and every 12 weeks after cycle 13. A >10-point change from baseline was considered clinically meaningful. PRO changes were summarized through cycle 13. Results: Most patients with NSCLC or MTC showed improvement or remained stable on the global health status and functional subscales. For global health status, 47.4% of NSCLC and MTC patients showed definite improvement with only 19.7% showing definite worsening. For functional subscales, less than 30% of the patients showed definite worsening. For symptom subscales, more than 64% of the patients either improved or remained stable for the symptoms. For MTC patients with bowel diary assessment (n = 5), there was no severity or worsening from baseline in the diarrheal episodes observed during treatment with selpercatinib. Conclusion: The study demonstrated favorable PROs in Chinese patients with RET fusion-positive NSCLC, TC, and RET-mutant MTC treated with selpercatinib. HRQoL was improved or stable as assessed by EORTC QLQ-30. Trail registration: This study was registered at ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT04280081) ClinicalTrials.gov Identifier: NCT04280081.

5.
J Am Chem Soc ; 145(36): 20073-20080, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37664895

RESUMEN

Functionalized polymer vesicles have been proven to be highly promising in biomedical applications due to their good biocompatibility, easy processability, and multifunctional responsive capacities. However, photothermal-responsive polymer vesicles triggered by near-infrared (NIR) light have not been widely reported until now. Herein, we propose a new strategy for designing NIR light-mediated photothermal polymer vesicles. A small molecule (PTA) with NIR-triggered photothermal features was synthesized by combining a D-D'-A-D'-D configuration framework with a molecular rotor function (TPE). The feasibility of the design strategy was demonstrated through density functional theory calculations. PTA moieties were introduced in the hydrophobic segment of a poly(ethylene glycol)-poly(trimethylene carbonate) block copolymer, of which the carbonate monomers were modified in the side chain with an active ester group. The amphiphilic block copolymers (PEG44-PTA2) were then used as building blocks for the self-assembly of photothermal-responsive polymer vesicles. The new class of functionalized polymer vesicles inherited the NIR-mediated high photothermal performance of the photothermal agent (PTA). After NIR laser irradiation for 10 min, the temperature of the PTA-Ps aqueous solution was raised to 56 °C. The photothermal properties and bilayer structure of PTA-Ps after laser irradiation were still intact, which demonstrated that they could be applied as a robust platform in photothermal therapy. Besides their photothermal performance, the loading capacity of PTA-Ps was investigated as well. Hydrophobic cargo (Cy7) and hydrophilic cargo (Sulfo-Cy5) were successfully encapsulated in the PTA-Ps. These properties make this new class of functionalized polymer vesicles an interesting platform for synergistic therapy in anticancer treatment.

6.
Biomacromolecules ; 24(9): 4148-4155, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37589683

RESUMEN

The application of transition-metal catalysts in living cells presents a promising approach to facilitate reactions that otherwise would not occur in nature. However, the usage of metal complexes is often restricted by their limited biocompatibility, toxicity, and susceptibility to inactivation and loss of activity by the cell's defensive mechanisms. This is especially relevant for ruthenium-mediated reactions, such as ring-closing metathesis. In order to address these issues, we have incorporated the second-generation Hoveyda-Grubbs catalyst (HGII) into polymeric vesicles (polymersomes), which were composed of biodegradable poly(ethylene glycol)-b-poly(caprolactone-g-trimethylene carbonate) [PEG-b-P(CL-g-TMC)] block copolymers. The catalyst was either covalently or non-covalently introduced into the polymersome membrane. These polymersomes were able to act as artificial organelles that promote endosomal ring-closing metathesis for the intracellular generation of a fluorescent dye. This is the first example of the use of a polymersome-based artificial organelle with an active ruthenium catalyst for carbon-carbon bond formation.


Asunto(s)
Células Artificiales , Complejos de Coordinación , Rutenio , Endosomas , Carbono , Polímeros
7.
Pharmaceutics ; 15(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514172

RESUMEN

Nanomotors have been extensively explored for various applications in nanomedicine, especially in cargo transportation. Motile properties enable them to deliver pharmaceutical ingredients more efficiently to the targeted site. However, it still remains a challenge to design motor systems that are therapeutically active and can also be effectively traced when taken up by cells. Here, we designed a nanomotor with integrated fluorescence and therapeutic potential based on biodegradable polymersomes equipped with aggregation-induced emission (AIE) agents. The AIE segments provided the polymersomes with autofluorescence, facilitating the visualization of cell uptake. Furthermore, the membrane structure enabled the reshaping of the AIE polymersomes into asymmetric, peanut-shaped polymersomes. Upon laser irradiation, these peanut polymersomes not only displayed fluorescence, but also produced reactive oxygen species (ROS). Because of their specific shape, the ROS gradient induced motility in these particles. As ROS is also used for cancer cell treatment, the peanut polymersomes not only acted as delivery vehicles but also as therapeutic agents. As an integrated platform, these peanut polymersomes therefore represent an interesting delivery system with biomedical potential.

8.
Anticancer Drugs ; 34(9): 1058-1064, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37265026

RESUMEN

Rearranged during transfection ( RET ) fusions and epidermal growth factor receptor ( EGFR ) mutations are potent oncogenic drivers in patients with nonsmall cell lung cancer (NSCLC), but rarely co-exist. Concurrent RET/EGFR mutations have been reported in patients with NSCLC who develop resistance to EGFR tyrosine kinase inhibitors but are even less frequent in treatment-naïve patients. Consequently, there is no standard treatment for RET/EGFR -mutated NSCLC. We report a case of RET/EGFR mutant NSCLC successfully treated with the oral, potent, highly selective RET inhibitor selpercatinib (160 mg daily for 28-day cycles) in an ongoing phase II study in Chinese patients with NSCLC (LIBRETTO-321). The patient, a female nonsmoker, was diagnosed with de-novo left lung adenocarcinoma with neuroendocrine differentiation, and a RET fusion was detected by next-generation sequencing testing. The patient had two tumors in the pleura, a third in the subcarinal lymph node, and a nontarget tumor in the pleura. Pleural biopsy analysis confirmed a RET fusion KIF5B (K15;R12) and an EGFR exon 19 deletion. The patient achieved a partial response (PR) with selpercatinib (absence of target tumors in pleura and reduction in the size of lymph node tumor). The PR persisted for 14.7 months, with disease progression in the nontarget lesion in the pleura and a new lesion in the liver (the PR had persisted), resulting in the discontinuation of selpercatinib. The only notable adverse event was grade 3 elevated transaminase, that was effectively managed by dose reduction. These data may support the use of selpercatinib in patients with RET/EGFR co-mutated NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Pueblos del Este de Asia , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ensayos Clínicos Fase II como Asunto
9.
Macromol Rapid Commun ; 44(16): e2200904, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36607841

RESUMEN

Polymersome nanoreactors that can be employed as artificial organelles have gained much interest over the past decades. Such systems often include biological catalysts (i.e., enzymes) so that they can undertake chemical reactions in cellulo. Examples of nanoreactor artificial organelles that acquire metal catalysts in their structure are limited, and their application in living cells remains fairly restricted. In part, this shortfall is due to difficulties associated with constructing systems that maintain their stability in vitro, let alone the toxicity they impose on cells. This study demonstrates a biodegradable and biocompatible polymersome nanoreactor platform, which can be applied as an artificial organelle in living cells. The ability of the artificial organelles to covalently and non-covalently incorporate tris(triazolylmethyl)amine-Cu(I) complexes in their membrane is shown. Such artificial organelles are capable of effectively catalyzing a copper-catalyzed azide-alkyne cycloaddition intracellularly, without compromising the cells' integrity. The platform represents a step forward in the application of polymersome-based nanoreactors as artificial organelles.


Asunto(s)
Células Artificiales , Química Clic , Catálisis , Cobre/química , Alquinos/química , Reacción de Cicloadición
10.
Ther Adv Med Oncol ; 14: 17588359221119318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062046

RESUMEN

Background: Selpercatinib, a highly selective and potent REarranged during Transfection (RET) kinase inhibitor, is effective in advanced RET-altered thyroid cancer (TC). However, the efficacy and safety in Chinese patients are unknown. Patients and methods: In the open-label, multi-center phase II LIBRETTO-321 (NCT04280081) study, Chinese patients with advanced solid tumors harboring RET alterations received selpercatinib 160 mg twice daily. The primary endpoint was objective response rate (ORR; RECIST v1.1) by independent review committee (IRC). Secondary endpoints included duration of response (DoR) and safety. Efficacy was assessed in the primary analysis set [PAS; treated patients with RET fusion-positive TC or RET-mutant medullary TC (MTC) confirmed by central laboratory] and all enrolled patients with MTC. Results: Of 77 enrolled patients, 29 had RET-mutant MTC and one had RET fusion-positive TC. In the PAS (n = 26), the ORR by IRC was 57.7% [95% confidence interval (CI), 36.9-76.6]. Median DoR was not reached and 93.3% of responses were ongoing at a median follow-up of 8.7 months. In all enrolled MTC patients (n = 29), the ORR by IRC was 58.6% (95% CI, 38.9-76.5). One RET fusion-positive TC patient treated for 23.4 weeks achieved a partial response at week 8 that was ongoing at cutoff. In the safety population (n = 77), 59.7% experienced grade ⩾3 treatment-emergent adverse events (TEAEs). TEAEs led to dose reductions in 32.5% (n = 25) and discontinuations in 5.2% [n = 4; 3.9% (n = 3) considered treatment related] of patients. Conclusions: Selpercatinib showed robust antitumor activity and was well tolerated in Chinese patients with advanced RET-altered TC, consistent with global data from LIBRETTO-001 (NCT04280081). ClinicalTrialsgov Identifier: NCT04280081 (first posted Feb 21, 2020).

11.
Ther Adv Med Oncol ; 14: 17588359221105020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923928

RESUMEN

Introduction: Oncogenic alterations in RET occur in 1-2% of non-small-cell lung cancers (NSCLCs). The efficacy and safety of the first-in-class, highly selective, and potent RET inhibitor selpercatinib in Chinese patients with RET fusion-positive NSCLC remains unknown. Methods: In this open-label, multicenter, phase II study (NCT04280081), patients with advanced RET-altered solid tumors received selpercatinib (160 mg orally twice daily) in a 28-day cycle. The primary endpoint was independent review committee (IRC)-assessed objective response rate (ORR; Response Evaluation Criteria in Solid Tumors v1.1). Secondary endpoints included duration of response, central nervous system (CNS) response, and safety. Efficacy against NSCLC was assessed in the primary analysis set (PAS; centrally confirmed RET status) and in all enrolled patients with NSCLC. Results: Of 77 enrolled patients, 47 had RET fusion-positive NSCLC. After 9.7 months of median follow-up, IRC-assessed ORR in the PAS (n = 26) was 69.2% [95% confidence interval (CI), 48.2-85.7] and 94.4% of responses were ongoing; the ORR was 87.5% and 61.1% in treatment-naïve and pre-treated patients, respectively. IRC-assessed ORR in all patients with NSCLC (n = 47) was 66.0% (95% CI, 50.7-79.1). Among five patients with measurable CNS metastases at baseline, four (80%) achieved an IRC-assessed intracranial response. In the safety population (n = 77), most treatment-emergent adverse events (TEAEs) were grade 1 or 2. The most common grade ⩾3 TEAE was hypertension (19.5%). Three (3.9%) patients discontinued therapy due to treatment-related AEs; no deaths occurred due to treatment-related AEs. Conclusion: Selpercatinib, with potent and durable antitumor activity including intracranial activity, was well tolerated in Chinese patients with RET fusion-positive NSCLC, consistent with LIBRETTO-001 (ClinicalTrials.gov: NCT04280081).

12.
J Am Chem Soc ; 144(25): 11246-11252, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35700477

RESUMEN

Supramolecular nanomotors were created with two types of propelling forces that were able to counterbalance each other. The particles were based on bowl-shaped polymer vesicles, or stomatocytes, assembled from the amphiphilic block copolymer poly(ethylene glycol)-block-polystyrene. The first method of propulsion was installed by loading the nanocavity of the stomatocytes with the enzyme catalase, which enabled the decomposition of hydrogen peroxide into water and oxygen, leading to a chemically induced motion. The second method of propulsion was attained by applying a hemispherical gold coating on the stomatocytes, on the opposite side of the opening, making the particles susceptible to near-infrared laser light. By exposing these Janus-type twin engine nanomotors to both hydrogen peroxide (H2O2) and near-infrared light, two competing driving forces were synchronously generated, resulting in a counterbalanced, "seesaw effect" motion. By precisely manipulating the incident laser power and concentration of H2O2, the supramolecular nanomotors could be halted in a standby mode. Furthermore, the fact that these Janus stomatocytes were equipped with opposing motile forces also provided a proof of the direction of motion of the enzyme-activated stomatocytes. Finally, the modulation of the "seesaw effect", by tuning the net outcome of the two coexisting driving forces, was used to attain switchable control of the motile behavior of the twin-engine nanomotors. Supramolecular nanomotors that can be steered by two orthogonal propulsion mechanisms hold considerable potential for being used in complex tasks, including active transportation and environmental remediation.


Asunto(s)
Peróxido de Hidrógeno , Polímeros , Oro , Peróxido de Hidrógeno/química , Movimiento (Física) , Polímeros/química
13.
Pharmaceutics ; 13(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34834248

RESUMEN

Bowl-shaped biodegradable polymersomes, or stomatocytes, have much potential as drug delivery systems, due to their intriguing properties, such as controllable size, programmable morphology, and versatile cargo encapsulation capability. In this contribution, we developed well-defined therapeutically active stomatocytes with aggregation-induced emission (AIE) features by self-assembly of biodegradable amphiphilic block copolymers, comprising poly(ethylene glycol) (PEG) and AIEgenic poly(trimethylene carbonate) (PTMC) moieties. The presence of the AIEgens endowed the as-prepared stomatocytes with intrinsic fluorescence, which was employed for imaging of cellular uptake of the particles. It simultaneously enabled the photo-mediated generation of reactive oxygen species (ROS) for photodynamic therapy. The potential of the therapeutic stomatocytes as cargo carriers was demonstrated by loading enzymes (catalase and glucose oxidase) in the nanocavity, followed by a cross-linking reaction to achieve stable encapsulation. This provided the particles with a robust motile function, which further strengthened their therapeutic effect. With these unique features, enzyme-loaded AIEgenic stomatocytes are an attractive platform to be exploited in the field of nanomedicine.

14.
ACS Nano ; 15(11): 18270-18278, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34668368

RESUMEN

Polymersomes that incorporate aggregation-induced emission (AIE) moieties are attractive inherently fluorescent nanoparticles with biomedical application potential for cell/tissue imaging and tracking, as well as phototherapeutics. An intriguing feature that has not been explored yet is their ability to adopt a range of asymmetric morphologies. Structural asymmetry allows nanoparticles to be exploited as active (motile) systems. Here, we present the design and preparation of AIE fluorophore integrated (AIEgenic) cucurbit-shaped polymersome nanomotors with enzyme-powered motility. The cucurbit scaffold was constructed via morphology engineering of biodegradable fluorescent AIE-polymersomes, followed by functionalization with enzymatic machinery via a layer-by-layer (LBL) self-assembly process. Because of the enzyme-mediated decomposition of chemical fuel on the cucurbit-like nanomotor surface, enhanced directed motion was attained, when compared with the spherical counterparts. These cucurbit-shaped biodegradable AIE-nanomotors provide a promising platform for the development of active delivery systems with potential for biomedical applications.


Asunto(s)
Nanopartículas , Nanopartículas/química , Colorantes Fluorescentes , Movimiento (Física)
15.
Macromol Biosci ; 21(6): e2100081, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942499

RESUMEN

In this study a histidine containing elastin-like polypeptide (ELP) diblock copolymer is described with multiresponsive assembly behavior. Self-assembly into micelles is examined by two methods. First, the self-assembly is triggered by the addition of divalent metal ions, with Zn2+ being the most suitable one. Increasing the Zn2+ concentration stabilizes the nanoparticles over a large temperature window (4-45 °C). This diblock exhibits furthermore pH-responsiveness, and particles disassemble under mildly acidic conditions. Second, the coassembly of this ELP with a diblock ELP is examined, which is not responsive to pH and metal ions. Coassembly is triggered by heating the ELPs quickly above the transition temperature of the less hydrophobic block, which results in stable nanoparticles without the need to add metal ions. This novel ELP system offers a versatile modular nanocarrier platform that can respond to different stimuli and can be tuned effectively.


Asunto(s)
Portadores de Fármacos , Elastina/química , Histidina/química , Nanopartículas/química , Péptidos/química , Zinc/química , Cationes Bivalentes , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polimerizacion , Temperatura
16.
Angew Chem Int Ed Engl ; 60(32): 17629-17637, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34036695

RESUMEN

Biodegradable nanostructures displaying aggregation-induced emission (AIE) are desirable from a biomedical point of view, due to the advantageous features of loading capacity, emission brightness, and fluorescence stability. Herein, biodegradable polymers comprising poly (ethylene glycol)-block-poly(caprolactone-gradient-trimethylene carbonate) (PEG-P(CLgTMC)), with tetraphenylethylene pyridinium-TMC (PAIE) side chains have been developed, which self-assembled into well-defined polymersomes. The resultant AIEgenic polymersomes are intrinsically fluorescent delivery vehicles. The presence of the pyridinium moiety endows the polymersomes with mitochondrial targeting ability, which improves the efficiency of co-encapsulated photosensitizers and improves therapeutic index against cancer cells both in vitro and in vivo. This contribution showcases the ability to engineer AIEgenic polymersomes with structure inherent fluorescence and targeting capacity for enhanced photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Plásticos Biodegradables/farmacología , Colorantes Fluorescentes/farmacología , Fármacos Fotosensibilizantes/farmacología , Poliésteres/farmacología , Polietilenglicoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/efectos de la radiación , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/efectos de la radiación , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/efectos de la radiación , Compuestos de Boro/síntesis química , Compuestos de Boro/farmacología , Compuestos de Boro/efectos de la radiación , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Humanos , Luz , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/efectos de la radiación , Poliésteres/síntesis química , Poliésteres/efectos de la radiación , Polietilenglicoles/síntesis química , Polietilenglicoles/efectos de la radiación , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/efectos de la radiación
17.
Nat Commun ; 12(1): 2077, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824321

RESUMEN

Aggregation-induced emission (AIE) has, since its discovery, become a valuable tool in the field of nanoscience. AIEgenic molecules, which display highly stable fluorescence in an assembled state, have applications in various biomedical fields-including photodynamic therapy. Engineering structure-inherent, AIEgenic nanomaterials with motile properties is, however, still an unexplored frontier in the evolution of this potent technology. Here, we present phototactic/phototherapeutic nanomotors where biodegradable block copolymers decorated with AIE motifs can transduce radiant energy into motion and enhance thermophoretic motility driven by an asymmetric Au nanoshell. The hybrid nanomotors can harness two photon near-infrared radiation, triggering autonomous propulsion and simultaneous phototherapeutic generation of reactive oxygen species. The potential of these nanomotors to be applied in photodynamic therapy is demonstrated in vitro, where near-infrared light directed motion and reactive oxygen species induction synergistically enhance efficacy with a high level of spatial control.


Asunto(s)
Luz , Nanopartículas/química , Fototerapia , Línea Celular Tumoral , Oro/química , Células HeLa , Humanos , Movimiento (Física) , Nanopartículas/ultraestructura , Polímeros/química
18.
Angew Chem Int Ed Engl ; 59(39): 16918-16925, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32533754

RESUMEN

Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non-degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near-infrared (NIR)-irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 µm s-1 . These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.


Asunto(s)
Oro/metabolismo , Nanopartículas del Metal/química , Polímeros/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Oro/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Tamaño de la Partícula , Procesos Fotoquímicos , Polímeros/química , Propiedades de Superficie
19.
ACS Cent Sci ; 5(8): 1360-1365, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31482118

RESUMEN

A systemic feature of eukaryotic cells is the spatial organization of functional components through compartmentalization. Developing protocells with compartmentalized synthetic organelles is, therefore, a critical milestone toward emulating one of the core characteristics of cellular life. Here we demonstrate the bottom-up, multistep, noncovalent, assembly of rudimentary subcompartmentalized protocells through the spontaneous encapsulation of semipermeable, polymersome proto-organelles inside cell-sized coacervates. The coacervate microdroplets are membranized using tailor-made terpolymers, to complete the hierarchical self-assembly of protocells, a system that mimics both the condensed cytosol and the structure of a cell membrane. In this way, the spatial organization of enzymes can be finely tuned, leading to an enhancement of functionality. Moreover, incompatible components can be sequestered in the same microenvironments without detrimental effect. The robust stability of the subcompartmentalized coacervate protocells in biocompatible milieu, such as in PBS or cell culture media, makes it a versatile platform to be extended toward studies in vitro, and perhaps, in vivo.

20.
Small ; 15(38): e1901849, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31379132

RESUMEN

Engineering biodegradable nanostructures with precise morphological characteristics is a key objective in nanomedicine. In particular, asymmetric (i.e., nonspherical) nanoparticles are desirable due to the advantageous effects of shape in a biomedical context. Using molecular engineering, it is possible to program unique morphological features into the self-assembly of block copolymers (BCPs). However, the criteria of biocompatibility and scalability limit progress due to the prevalence of nondegradable components and the use of toxic solvents during fabrication. To address this shortfall, a robust strategy for the fabrication of morphologically asymmetric nanoworms, comprising biodegradable BCPs, has been developed. Modular BCPs comprising poly (ethylene glycol)-block-poly(caprolactone-gradient-trimethylene carbonate) (PEG-PCLgTMC), with a terminal chain of quaternary ammonium-TMC (PTMC-Q), undergo self-assembly via direct hydration into well-defined nanostructures. By controlling the solution ionic strength during hydration, particle morphology switches from spherical micelles to nanoworms (of varying aspect ratio). This ionically-induced switch is driven by modulation of chain packing with salts screening interchain repulsions, leading to micelle elongation. Nanoworms can be loaded with cytotoxic cargo (e.g., doxorubicin) at high efficiency, preferentially interact with cancer cells, and increase tumor penetration. This work showcases the ability to program assembly of BCPs and the potential of asymmetric nanosystems in anticancer drug delivery.


Asunto(s)
Caproatos/química , Sistemas de Liberación de Medicamentos/métodos , Lactonas/química , Nanomedicina/métodos , Nanoestructuras/química , Micelas , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...