Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Resist Updat ; 77: 101136, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39154499

RESUMEN

AIMS: As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS: In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS: CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS: Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.

2.
J Inflamm Res ; 17: 5253-5269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135978

RESUMEN

Purpose: This study investigated the correlation between the Naples prognostic score (NPS), clinicopathological traits, and the postoperative prognoses of patients with triple-negative breast cancer (TNBC). Based on NPS, a predictive nomogram was developed to estimate the long-term survival probabilities of patients with TNBC post-surgery. Patients and Methods: We retrospectively examined the clinical records of 223 women with TNBC treated at Ningbo Medical Center, Lihuili Hospital between January 1, 2016 and December 31, 2020. Blood tests and biochemical analyses were conducted before surgery. The prognostic nutritional index (PNI), controlling nutritional status (CONUT), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and NPS were determined based on blood-related markers. A Kaplan-Meier survival analysis assessed the association between NPS, PNI, CONUT score, overall survival (OS), and breast cancer-specific survival (BCSS). Predictive accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) and C index. The patients were randomly divided into the training and the validation group (6:4 ratio). A nomogram prediction model was developed and evaluated using the R Software for Statistical Computing (RMS) package. Results: NPS outperformed other scores in predicting inflammation outcomes. Patients with an elevated NPS had a poorer prognosis (P<0.001). Lymph node ratio (LNR), surgical method, postoperative chemotherapy, and NPS independently predicted OS, whereas M stage, LNR, and NPS independently predicted BCSS outcome. The OS and BCSS predicted by the nomogram model aligned well with the actual OS and BCSS. The decision curve analysis showed significant clinical utility for the nomogram model. Conclusion: In this study, NPS was an important prognostic indicator for patients with TNBC. The nomogram prognostic model based on NPS outperformed other prognostic scores for predicting patient prognosis. The model demonstrated a clear stratification ability for patient prognosis, which emphasized the potential benefits of early intervention for high-risk patients.


In this study, we aimed to understand how the Naples prognostic score (NPS) scoring system could predict the prognosis for patients with triple-negative breast cancer (TNBC). TNBC is a type of breast cancer that can be difficult to treat. Medical records of 223 women with TNBC were retrospectively analyzed. These women had their blood tested before surgery to check for certain markers related to nutrition and inflammation. NPS was used along with other scores to determine their accuracy in predicting survival. NPS was better at predicting outcomes than the other scores. The patients with higher NPS scores tended to have poorer outcomes. We also created a visual tool called a nomogram to help doctors predict patient outcomes based on the NPS scores. NPS can be a valuable tool for doctors treating patients with TNBC because it can help them predict how well a patient might do after surgery. This information could be used to tailor treatment plans for these patients. The nomogram provides a user-friendly way for doctors to use NPS in their practice. Overall, this study showed that NPS is a powerful tool for predicting outcomes for patients with TNBC, which could lead to better treatment decisions and improved outcomes for these patients.

3.
Toxics ; 12(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39058157

RESUMEN

Phthalate acid esters (PAEs) are one of the most widely used plasticizers globally, extensively employed in various decoration materials. However, studies on the impact of these materials on indoor environmental PAE pollution and their effects on human health are limited. In this study, forty dust samples were collected from four types of stores specializing in decoration materials (flooring, furniture boards, wall coverings, and household articles). The levels, sources, exposure doses, and potential health risks of PAEs in dust from decoration material stores were assessed. The total concentrations of Σ9PAE (the sum of nine PAEs) in dust from all decoration-material stores ranged from 46,100 ng/g to 695,000 ng/g, with a median concentration of 146,000 ng/g. DMP, DEP, DBP, and DEHP were identified as the predominant components. Among all stores, furniture board stores exhibited the highest Σ9PAE (159,000 ng/g, median value), while flooring stores exhibited the lowest (95,300 ng/g). Principal component analysis (PCA) showed that decoration materials are important sources of PAEs in the indoor environment. The estimated daily intakes of PAEs through non-dietary dust ingestion and dermal-absorption pathways among staff in various decoration-material stores were 60.0 and 0.470 ng/kg-bw/day (flooring stores), 113 and 0.780 ng/kg-bw/day (furniture board stores), 102 and 0.510 ng/kg-bw/day (wall covering stores), and 114 and 0.710 ng/kg-bw/day (household article stores). Particularly, staff in wall-covering and furniture-board stores exhibited relatively higher exposure doses of DEHP. Risk assessment indicated that although certain PAEs posed potential health risks, the exposure levels for staff in decoration material stores were within acceptable limits. However, staff in wall covering stores exhibited relatively higher risks, necessitating targeted risk-management strategies. This study provides new insights into understanding the risk associated with PAEs in indoor environments.

4.
J Gastrointest Oncol ; 15(3): 921-930, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989422

RESUMEN

Background: Gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs) constitute a rare and aggressive group of malignancies usually with widespread disease. There are limited studies on GEP-NECs, and therefore, we aim to acquire more information on the clinical features, treatment regimens, and prognosis. Methods: Data from advanced GEP-NECs patients who had not previously received systemic treatment for advanced disease at The First Affiliated Hospital of Nanjing Medical University from 2010 to 2022 were retrospectively collected. Relationships between clinical-pathological features, treatment regimens, and prognosis were investigated using Kaplan-Meier curves and cox regression models. Results: A total of fifty-four patients were enrolled in the study. The median age was 65.5 years and 79.6% were male. At diagnosis, 51.9% and 3.7% of patients developed liver and brain metastasis respectively. Sixteen (29.6%) patients received chemotherapy according to primary site of tumor (PST), while thirty-eight (70.4%) were treated with etoposide-platinum (EP) regimen, which based on the first-line treatment of advanced small cell lung cancer (SCLC). No significant differences on progression-free survival (PFS) and response rate were observed between these two groups. Univariate survival analysis showed that liver metastasis, elevated baseline serum carcinoembryonic antigen, elevated baseline serum neuron-specific enolase, elevated baseline serum lactate dehydrogenase, and elevated baseline serum neutrophil-to-lymphocyte ratio (NLR) were associated with shorter PFS. After multivariate analysis, elevated NLR was the only factor that remained significantly associated with shorter PFS (P=0.01). Conclusions: GEP-NECs are aggressive neoplasms, of which elevated NLR is proven to be an independent negative predictor. Treatment regimens based on PST are not inferior to regiments based on SCLC (EP) for GEP-NECs patients. Large-scale, prospective randomized controlled trials are required to establish the standard of care.

5.
Front Oncol ; 14: 1388869, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919536

RESUMEN

Introduction: Triple-negative breast cancer (TNBC) is linked to a poorer outlook, heightened aggressiveness relative to other breast cancer variants, and limited treatment choices. The absence of conventional treatment methods makes TNBC patients susceptible to metastasis. The objective of this research was to assess the clinical and pathological traits of TNBC patients, predict the influence of risk elements on their outlook, and create a prediction model to assist doctors in treating TNBC patients and enhancing their prognosis. Methods: We included 23,394 individuals with complete baseline clinical data and survival information who were diagnosed with primary TNBC between 2010 and 2015 based on the SEER database. External validation utilised a group from The Affiliated Lihuili Hospital of Ningbo University. Independent risk factors linked to TNBC prognosis were identified through univariate, multivariate, and least absolute shrinkage and selection operator regression methods. These characteristics were chosen as parameters to develop 3- and 5-year overall survival (OS) and breast cancer-specific survival (BCSS) nomogram models. Model accuracy was assessed using calibration curves, consistency indices (C-indices), receiver operating characteristic curves (ROCs), and decision curve analyses (DCAs). Finally, TNBC patients were divided into groups of high, medium, and low risk, employing the nomogram model for conducting a Kaplan-Meier survival analysis. Results: In the training cohort, variables such as age at diagnosis, marital status, grade, T stage, N stage, M stage, surgery, radiation, and chemotherapy were linked to OS and BCSS. For the nomogram, the C-indices stood at 0.762, 0.747, and 0.764 in forecasting OS across the training, internal validation, and external validation groups, respectively. Additionally, the C-index values for the training, internal validation, and external validation groups in BCSS prediction stood at 0.793, 0.755, and 0.811, in that order. The findings revealed that the calibration of our nomogram model was successful, and the time-variant ROC curves highlighted its effectiveness in clinical settings. Ultimately, the clinical DCA showcased the prospective clinical advantages of the suggested model. Furthermore, the online version was simple to use, and nomogram classification may enhance the differentiation of TNBC prognosis and distinguish risk groups more accurately. Conclusion: These nomograms are precise tools for assessing risk in patients with TNBC and forecasting survival. They can help doctors identify prognostic markers and create more effective treatment plans for patients with TNBC, providing more accurate assessments of their 3- and 5-year OS and BCSS.

6.
Mol Biomed ; 5(1): 11, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556586

RESUMEN

Gastric cancer (GC) is a common malignant tumor worldwide, especially in East Asia, with high incidence and mortality rate. Epigenetic modifications have been reported to participate in the progression of gastric cancer, among which m6A is the most abundant and important chemical modification in RNAs. Fat mass and obesity-associated protein (FTO) is the first identified RNA demethylase but little is known about its role in gastric cancer. In our study, data from TCGA and clinical samples showed that FTO was highly expressed in gastric cancer tissues. Kaplan-Meier plotter suggested that patients with the high level of FTO had a poor prognosis. In vitro and in vivo experiments confirmed the role of FTO in promoting gastric cancer cell proliferation. Mechanistically, we found that FTO bound to circFAM192A at the specific site and removed the m6A modification in circFAM192A, protecting it from degradation. CircFAM192A subsequently interacted with the leucine transporter solute carrier family 7 member 5 (SLC7A5) and enhancing its stability. As a result, an increased amount of SLC7A5 was on the membrane, which facilitated leucine uptake and activated the mTOR signaling pathway. Therefore, our study demonstrated that FTO promoted gastric cancer proliferation through the circFAM192A/SLC7A5 axis in the m6A-dependent manner. Our study shed new light on the role of FTO in gastric cancer progression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Transportador de Aminoácidos Neutros Grandes 1 , ARN Circular , Neoplasias Gástricas , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Línea Celular Tumoral , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Ratones Desnudos , Pronóstico , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Metilación de ARN , ARN Circular/genética , ARN Circular/metabolismo
7.
Gene ; 870: 147421, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37031882

RESUMEN

Due to the abusive use of antibiotics, bacterial resistance has become a global problem and poses severe threats to aquaculture. The drug-resistant diseases caused by Vibrio alginolyticus have caused significant economic losses to cultured marine fish. Fructus schisandrae is used to treat inflammatory diseases in China and Japan. There have been no reports of bacterial molecular mechanisms associated with F. schisandrae stress. In this study, the inhibiting effect of F. schisandrae on the growth of V. alginolyticus was detected to understand response mechanisms at the molecular level. The antibacterial tests were analyzed via next-generation deep sequencing technology (RNA sequencing, RNA-seq). Wild V. alginolyticus (CK) was compared with V. alginolyticus, F. schisandrae incubated for 2 h, and V. alginolyticus, F. schisandrae incubated for 4 h. Our results revealed that there were 582 genes (236 upregulated and 346 downregulated) and 1068 genes (376 upregulated and 692 downregulated), respectively. Differentially expressed genes (DEGs) were involved in the following functional categories: metabolic process, single-organism process, catalytic activity, cellular process, binding, membrane, cell part, cell, and localization. FS_2 h was compared with FS_4 h, and 21 genes (14 upregulated and 7 downregulated) were obtained. The RNA-seq results were validated by detecting the expression levels of 13 genes using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results matched those of the sequencing, which reinforced the reliability of the RNA-seq. The results revealed the transcriptional response of V. alginolyticus to F. schisandrae, which will provide new ideas for studying V. alginolyticus' complex virulence molecular mechanism and the possibility of developing Schisandra to prevent and treat drug-resistant diseases.


Asunto(s)
Peces , Vibrio alginolyticus , Animales , Virulencia/genética , Vibrio alginolyticus/genética , Reproducibilidad de los Resultados , Peces/genética , Secuencia de Bases
8.
mBio ; 14(1): e0326222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719199

RESUMEN

The soil microbiome is a driver of nitrous oxide (N2O) emissions in terrestrial ecosystems. Identifying the core microbiome of N2O emissions and its temperature sensitivity from trillions of soil microorganisms is a great challenge and is essential to improving the predictability of soil-climate feedback related to increasing temperature. Here, the integrated soil microbiome covering archaeal, bacterial, fungal, algal, and microfaunal communities was studied to disengage the potential linkage with its N2O emissions and its temperature sensitivity in paddy fields by hunting for core species pairs. The results showed that between-group interactions of core bacterial and archaeal members and the within-group interactions of core bacterial members jointly contributed to the N2O emissions and its temperature sensitivity. The contribution of between-group interactions (32 to 33%) was greater than that of within groups (10 to 18%). These results suggested that N2O emissions and their fluctuations related to climate warming are affected by the within- and between-group interactions of the soil microbiome. Our results help advance the knowledge on the importance of microbial keystone species and network associations in controlling N2O production and their responses to increasing temperature. IMPORTANCE Soil microorganisms drive emissions of nitrous oxide from soils; this is a powerful greenhouse gas and the dominant ozone-depleting agent. N2O emissions can be partly predicted from soil properties and specific microbial groups, whereas a possible role of below-ground microbial interactions has largely been overlooked. Here, the integrated soil microbiome covering archaeal, bacterial, fungal, algal, and microfaunal communities was studied to disengage the potential linkage with the N2O emissions and temperature sensitivity of the microbiome in paddy fields by hunting for core species pairs. The results showed that between-group interactions of core bacterial and archaeal members and the within-group interactions of core bacterial members jointly contributed to the N2O emissions. The contribution of between-group interactions (32 to 33%) was greater than that of within-group interactions (10 to 18%). Our results help advance the knowledge on the importance of microbial keystone species and interactions in controlling N2O production and their responses to increasing temperature.


Asunto(s)
Microbiota , Oryza , Óxido Nitroso , Temperatura , Suelo , Interacciones Microbianas , Agricultura/métodos
9.
Microorganisms ; 10(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363689

RESUMEN

Vibrio alginolyticus is a common opportunistic pathogen of fish, shrimp, and shellfish, and many diseases it causes can result in severe economic losses in the aquaculture industry. Causing host disease was confirmed by several virulence factors of V. alginolyticus. To date, there have been no reports on the effect of the pstS gene on its virulence regulation of V. alginolyticus. The virulence mechanism of target genes regulating V. alginolyticus is worthy of further study. Previous studies found that Fructus schisandrae (30 mg/mL) inhibited the growth of V. alginolyticus ND-01 (OD600 = 0.5) for 4 h, while the expressions of pstS and pstB were significantly affected by F. schisandrae stress. So, we speculated that pstS and pstB might be the virulence genes of V. alginolyticus, which were stably silenced by RNAi to construct the silencing strains pstS-RNAi and pstB-RNAi, respectively. After the expression of pstS or pstB gene was inhibited, the adhesion capacity and biofilm formation of V. alginolyticus were significantly down-regulated. The chemotaxis and biofilm formation ability of pstS-RNAi was reduced by 33.33% and 68.13% compared with the wild-type strain, respectively. Sequence alignment and homology analysis showed that pstS was highly conserved, which suggested that pstS played a vital role in the secretion system of V. alginolyticus. The pstS-RNAi with the highest silencing efficiency was selected for transcriptome sequencing. The Differentially Expressed Genes (DEGs) and GO terms were mapped to the reference genome of V. alginolyticus, including 1055 up-regulated genes and 1134 down-regulated genes. The functions of the DEGs were analyzed by GO and categorized into different enriched functional groups, such as ribosome synthesis, organelles, biosynthesis, pathogenesis, and secretion. These DEGs were then mapped to the reference KEGG pathways of V. alginolyticus and enriched in commonalities in the metabolic, ribosomal, and bacterial secretion pathways. Therefore, pstS and pstB could regulate the bacterial virulence of V. alginolyticus by affecting its adhesion, biofilm formation ability, and motility. Understanding the relationship between the expressions of pstS and pstB with bacterial virulence could provide new perspectives to prevent bacterial diseases.

13.
Stat Med ; 40(23): 4977-4995, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139788

RESUMEN

Joint mean-covariance modeling of multivariate longitudinal data helps to understand the relative changes among multiple longitudinally measured and correlated outcomes. A key challenge in the analysis of multivariate longitudinal data is the complex covariance structure. This is due to the contemporaneous and cross-temporal associations between multiple longitudinal outcomes. Graphical and data-driven tools that can aid in visualizing the dependence patterns among multiple longitudinal outcomes are not readily available. In this work, we show the role of graphical techniques: profile plots, and multivariate regressograms, in developing mean and covariance models for multivariate longitudinal data. We introduce an R package MLGM (Multivariate Longitudinal Graphical Models) to facilitate visualization and modeling mean and covariance patterns. Through two real studies, microarray data from the T-cell activation study and Mayo Clinic's primary biliary cirrhosis of the liver study, we show the key features of MLGM. We evaluate the finite sample performance of the proposed mean-covariance estimation approach through simulations.


Asunto(s)
Estudios Longitudinales , Análisis Multivariante
14.
Environ Pollut ; 287: 117494, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34182387

RESUMEN

Nitrous oxide (N2O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH3 oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N2O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N2O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH3 oxidizers and denitrifiers, including the previously-overlooked taxa, in N2O emission from a cropland, and address the biological and environmental factors controlling the N2O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N2O production than the long-studied ones. We also demonstrated that the N2O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N2O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N2O production by overlooked denitrifying bacteria and N2O reduction by long-studied N2O-reducing bacteria after manure fertilization into the plowed layer; and (3) N2O production by NH3-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH3 oxidizers and denitrifiers, which will help us understand the environmental context-dependent N2O emission processes.


Asunto(s)
Óxido Nitroso , Suelo , Amoníaco , Productos Agrícolas , Desnitrificación , Nitrificación , Óxido Nitroso/análisis , Microbiología del Suelo
15.
ISME J ; 15(8): 2427-2439, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33664432

RESUMEN

Nitrous oxide (N2O) is an important greenhouse gas and an ozone-depleting substance. Due to the long persistence of N2O in the atmosphere, the mitigation of anthropogenic N2O emissions, which are mainly derived from microbial N2O-producing processes, including nitrification and denitrification by bacteria, archaea, and fungi, in agricultural soils, is urgently necessary. Members of mesofauna affect microbial processes by consuming microbial biomass in soil. However, how microbial consumption affects N2O emissions is largely unknown. Here, we report the significant role of fungivorous mites, the major mesofaunal group in agricultural soils, in regulating N2O production by fungi, and the results can be applied to the mitigation of N2O emissions. We found that the application of coconut husks, which is the low-value part of coconut and is commonly employed as a soil conditioner in agriculture, to soil can supply a favorable habitat for fungivorous mites due to its porous structure and thereby increase the mite abundance in agricultural fields. Because mites rapidly consume fungal N2O producers in soil, the increase in mite abundance substantially decreases the N2O emissions from soil. Our findings might provide new insight into the mechanisms of soil N2O emissions and broaden the options for the mitigation of N2O emissions.


Asunto(s)
Ácaros , Suelo , Agricultura , Animales , Desnitrificación , Nitrificación , Óxido Nitroso/análisis , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA