Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949620

RESUMEN

Electronic devices employing two-dimensional (2D) van der Waals (vdW) transition-metal dichalcogenide (TMD) layers as semiconducting channels often exhibit limited performance (e.g., low carrier mobility), in part, due to their high contact resistances caused by interfacing non-vdW three-dimensional (3D) metal electrodes. Herein, we report that this intrinsic contact issue can be efficiently mitigated by forming the 2D/2D in-plane junctions of 2D semiconductor channels seamlessly interfaced with 2D metal electrodes. For this, we demonstrated the selectively patterned conversion of semiconducting 2D PtSe2 (channels) to metallic 2D PtTe2 (electrodes) layers by employing a wafer-scale low-temperature chemical vapor deposition (CVD) process. We investigated a variety of field-effect transistors (FETs) employing wafer-scale CVD-2D PtSe2/2D PtTe2 heterolayers and identified that silicon dioxide (SiO2) top-gated FETs exhibited an extremely high hole mobility of ∼120 cm2 V-1 s-1 at room temperature, significantly surpassing performances with previous wafer-scale 2D PtSe2-based FETs. The low-temperature nature of the CVD method further allowed for the direct fabrication of wafer-scale arrays of 2D PtSe2/2D PtTe2 heterolayers on polyamide (PI) substrates, which intrinsically displayed optical pulse-induced artificial synaptic behaviors. This study is believed to vastly broaden the applicability of 2D TMD layers for next-generation, high-performance electronic devices with unconventional functionalities.

2.
Adv Mater ; : e2314274, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647521

RESUMEN

A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.

3.
Adv Mater ; 36(14): e2310498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38169481

RESUMEN

Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe2) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe2 channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe2 LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.

4.
Nano Lett ; 24(6): 1891-1900, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38150559

RESUMEN

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.

5.
ACS Nano ; 17(20): 20680-20688, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37831937

RESUMEN

Tin monosulfide (SnS) is a promising piezoelectric material with an intrinsically layered structure, making it attractive for self-powered wearable and stretchable devices. However, for practical application purposes, it is essential to improve the output and manufacturing compatibility of SnS-based piezoelectric devices by exploring their large-area synthesis principle. In this study, we report the chemical vapor deposition (CVD) growth of centimeter-scale two-dimensional (2D) SnS layers at temperatures as low as 200 °C, allowing compatibility with processing a range of polymeric substrates. The intrinsic piezoelectricity of 2D SnS layers directly grown on polyamides (PIs) was confirmed by piezoelectric force microscopy (PFM) phase maps and force-current corroborative measurements. Furthermore, the structural robustness of the centimeter-scale 2D SnS layers/PIs allowed for engraving complicated kirigami patterns on them. The kirigami-patterned 2D SnS layer devices exhibited intriguing strain-tolerant piezoelectricity, which was employed in detecting human body motions and generating photocurrents irrespective of strain rate variations. These results establish the great promise of 2D SnS layers for practically relevant large-scale device technologies with coupled electrical and mechanical properties.

6.
Sci Adv ; 9(23): eadg6696, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285425

RESUMEN

van der Waals (vdW) epitaxy can be used to grow epilayers with different symmetries on graphene, thereby imparting unprecedented properties in graphene owing to formation of anisotropic superlattices and strong interlayer interactions. Here, we report in-plane anisotropy in graphene by vdW epitaxially grown molybdenum trioxide layers with an elongated superlattice. The grown molybdenum trioxide layers led to high p-doping of the underlying graphene up to p = 1.94 × 1013 cm-2 regardless of the thickness of molybdenum trioxide, maintaining a high carrier mobility of 8155 cm2 V-1 s-1. Molybdenum trioxide-induced compressive strain in graphene increased up to -0.6% with increasing molybdenum trioxide thickness. The asymmetrical band distortion of molybdenum trioxide-deposited graphene at the Fermi level led to in-plane electrical anisotropy with a high conductance ratio of 1.43 owing to the strong interlayer interaction of molybdenum trioxide-graphene. Our study presents a symmetry engineering method to induce anisotropy in symmetric two-dimensional (2D) materials via the formation of asymmetric superlattices with epitaxially grown 2D layers.

7.
Nanoscale ; 14(38): 14106-14112, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070461

RESUMEN

Transition metal dichalcogenides (TMDs) have been considered as promising candidates for transparent and flexible optoelectronic devices owing to their large exciton binding energy and strong light-matter interaction. However, monolayer (1L) TMDs exhibited different intensities and spectra of photoluminescence (PL), and the characteristics of their electronic devices also differed in each study. This has been explained in terms of various defects in TMDs, such as vacancies and grain boundaries, and their surroundings, such as dielectric screening and charged impurities, which lead to non-radiative recombination of trions, low quantum yield (QY), and unexpected doping. However, it should be noted that the surface conditions of the substrate are also a critical factor in determining the properties of TMDs located on the substrate. Here, we demonstrate that the optical and electrical properties of 1L MoS2 are strongly influenced by the functionalized substrate. The PL of 1L MoS2 placed on the oxygen plasma-treated SiO2 substrate was highly p-doped owing to the functional groups of -OH on SiO2, resulting in a strong enhancement of PL by approximately 20 times. The PL QY of 1L MoS2 on plasma-treated SiO2 substrate increased by one order of magnitude. Surprisingly, the observed PL spectra show the suppression of non-radiative recombination by trions, thus the exciton-dominant PL led to a prolonged lifetime of MoS2 on the plasma-treated substrate. The MoS2 field-effect transistors fabricated on plasma-treated SiO2 also exhibited a large hysteresis in the transfer curve owing to charge trapping of the functional groups. Our study demonstrates that the functional groups on the substrate strongly affect the characteristics of 1L MoS2, which provides clues as to why MoS2 exfoliated on various substrates always exhibited different properties in previous studies.

8.
Nanoscale Adv ; 4(4): 1191-1198, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36131764

RESUMEN

Transition metal dichalcogenides (TMDs) are promising candidates for the semiconductor industry owing to their superior electrical properties. Their surface oxidation is of interest because their electrical properties can be easily modulated by an oxidized layer on top of them. Here, we demonstrate the XeF2-mediated surface oxidation of 2H-MoTe2 (alpha phase MoTe2). MoTe2 exposed to XeF2 gas forms a thin and uniform oxidized layer (∼2.5 nm-thick MoO x ) on MoTe2 regardless of the exposure time (within ∼120 s) due to the passivation effect and simultaneous etching. We used the oxidized layer for contacts between the metal and MoTe2, which help reduce the contact resistance by overcoming the Fermi level pinning effect by the direct metal deposition process. The MoTe2 field-effect transistors (FETs) with a MoO x interlayer exhibited two orders of magnitude higher field-effect hole mobility of 6.31 cm2 V-1 s-1 with a high on/off current ratio of ∼105 than that of the MoTe2 device with conventional metal contacts (0.07 cm2 V-1 s-1). Our work shows a straightforward and effective method for forming a thin oxide layer for MoTe2 devices, applicable for 2D electronics.

9.
Adv Mater ; 32(43): e2003567, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32914498

RESUMEN

2D semiconductors have shown great potential for application to electrically tunable optoelectronics. Despite the strong excitonic photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDs), their efficient electroluminescence (EL) has not been achieved due to the low efficiency of charge injection and electron-hole recombination. Here, multioperation-mode light-emitting field-effect transistors (LEFETs) consisting of a monolayer WSe2 channel and graphene contacts coupled with two top gates for selective and balanced injection of charge carriers are demonstrated. Visibly observable EL is achieved with the high external quantum efficiency of ≈6% at room temperature due to efficient recombination of injected electrons and holes in a confined 2D channel. Further, electrical tunability of both the channel and contacts enables multioperation modes, such as antiambipolar, depletion,and unipolar regions, which can be utilized for polarity-tunable field-effect transistors and photodetectors. The work exhibits great potential for use in 2D semiconductor LEFETs for novel optoelectronics capable of high efficiency, multifunctions, and heterointegration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...