Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
PLoS One ; 19(7): e0306937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968217

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0092993.].

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38752857

RESUMEN

Avian reoviruses continue to cause disease in turkeys with varied pathogenicity and tissue tropism. Turkey enteric reovirus has been identified as a causative agent of enteritis or inapparent infections in turkeys. The new emerging variants of turkey reovirus, tentatively named turkey arthritis reovirus (TARV) and turkey hepatitis reovirus (THRV), are linked to tenosynovitis/arthritis and hepatitis, respectively. Turkey arthritis and hepatitis reoviruses are causing significant economic losses to the turkey industry. These infections can lead to poor weight gain, uneven growth, poor feed conversion, increased morbidity and mortality and reduced marketability of commercial turkeys. To combat these issues, detecting and classifying the types of reoviruses in turkey populations is essential. This research aims to employ clustering methods, specifically K-means and Hierarchical clustering, to differentiate three types of turkey reoviruses and identify novel emerging variants. Additionally, it focuses on classifying variants of turkey reoviruses by leveraging various machine learning algorithms such as Support Vector Machines, Naive Bayes, Random Forest, Decision Tree, and deep learning algorithms, including convolutional neural networks (CNNs). The experiments use real turkey reovirus sequence data, allowing for robust analysis and evaluation of the proposed methods. The results indicate that machine learning methods achieve an average accuracy of 92%, F1-Macro of 93% and F1-Weighted of 92% scores in classifying reovirus types. In contrast, the CNN model demonstrates an average accuracy of 85%, F1-Macro of 71% and F1-Weighted of 84% scores in the same classification task. The superior performance of the machine learning classifiers provides valuable insights into reovirus evolution and mutation, aiding in detecting emerging variants of pathogenic TARVs and THRVs.


Asunto(s)
Aprendizaje Automático , Orthoreovirus Aviar , Infecciones por Reoviridae , Pavos , Animales , Orthoreovirus Aviar/genética , Orthoreovirus Aviar/clasificación , Orthoreovirus Aviar/patogenicidad , Pavos/virología , Infecciones por Reoviridae/virología , Enfermedades de las Aves de Corral/virología , Filogenia
3.
ACS Omega ; 9(8): 9098-9108, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434898

RESUMEN

In recent years, truxenes and related polyaromatic hydrocarbons (PAHs) have engrossed ample interest of the scientific community because of their ease of synthesis, functionalizations, and use as building blocks for the synthesis of fullerene fragments, liquid crystals, larger polyarenes, and C3-tripod materials. In the present work, we have disclosed an ingenious method for the construction of various indolo-truxene hybrid molecules in good yields (52-90%), by means of the acid-catalyzed cotrimerization, Friedel-Crafts acylation, and Fischer indole synthesis, and fully characterized them through the standard spectroscopic techniques. The photophysical properties of the thus-prepared compounds have also been investigated using steady-state absorption and fluorescence and time-resolved fluorescence spectroscopy techniques. Moreover, the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been studied to correlate them with the measured photophysical properties of the synthesized indolo-truxene derivatives.

4.
Vet Pathol ; : 3009858241235392, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38440886

RESUMEN

Three cats, aged 2 to 11 years, presented to the University of Minnesota Veterinary Diagnostic Laboratory over a 3-year period following euthanasia or death due to respiratory distress. Thoracic radiographs revealed nodular, soft tissue opacities throughout the lung fields in all cases. On postmortem examination, approximately 60% to 80% of the lung parenchyma were expanded by multifocal to coalescing, well-demarcated, beige, semi-firm nodules. Histologically, large numbers of neutrophils, fewer macrophages, fibrin, and cellular and karyorrhectic debris effaced the pulmonary parenchyma. The inflammatory foci contained aggregates of gram-negative cocci. 16s rRNA Sanger sequencing and whole-genome sequencing identified the bacteria isolated from the lung of all cats under aerobic conditions as a novel Neisseria spp. Based on whole-genome sequence analysis, all 3 sequences shared 92.71% and 92.67% average nucleotide identity with closely related Neisseria animaloris NZ LR134440T and Neisseria animaloris GCA 002108605T, respectively. The in silico DNA-DNA hybridization identity compared to our isolates was 46.6% and 33.8% with strain DSM Neisseria zoodegmatis 21642 and strain DSM 21643, respectively. All 3 sequences have less than 95% average nucleotide identity and less than 70% DNA-DNA hybridization identity, suggesting that the 3 isolates are a novel species of the genus Neisseria. Infection with Neisseria spp. induces an embolic pneumonia in cats that radiographically and pathologically resembles a metastatic neoplastic process and should be considered among the etiologic differential diagnoses in cases of infectious pulmonary disease with a disseminated, nodular lung pattern.

6.
J Neurooncol ; 167(1): 189-198, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265748

RESUMEN

INTRODUCTION: CDKN2A/B homozygous deletion is one of the defining features of grade 4 in IDH-mutant astrocytic tumours. AIM: To evaluate CDKN2A/B-deletion in IDH-mutant astrocytic tumours and its clinicopathological impact. MATERIALS AND METHODS: CDKN2A/B-deletion was evaluated by Fluorescence in-situ hybridisation (FISH) and interpreted by two recently accepted methods. RESULTS: Eighty-three out of 94 cases (histologically-grade 2: 3, grade 3: 46, grade 4: 34) were interpretable on FISH. Concordant CDKN2A/B-deletion was observed in 71% (27/38) of lower-grade tumours (n = 49) and 90% (27/30) of histological grade 4 tumours (n = 34). Both the interpretation methods showed good agreement (Kappa = 0.75). CDKN2A/B-deletion showed an inverse correlation for < 10% MIB-1 labeling index (p = 0.01) while that by method-2 showed a significant correlation for grade 4 (p = 0.02). No significant correlation was observed for any other clinicopathological parameters. Twenty-four patients showed progression/recurrence (including deaths), and no significant difference in frequency of CDKN2A/B deletion was observed among cases with disease progression across different histological grades. CONCLUSIONS: CDKN2A/B-deletion was observed across all the histological grades of IDH-mutant astrocytic tumours, expectedly more in the higher grade. FISH, as a method, can be used for the detection of CDKN2A/B homozygous deletion, when there is concordant interpretation.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Humanos , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Fluorescencia , Homocigoto , Isocitrato Deshidrogenasa/genética , Mutación , Eliminación de Secuencia , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética
7.
Eur J Med Chem ; 263: 115940, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37976707

RESUMEN

IGF2BP1 is a protein that controls the stability, localization, and translation of various mRNA targets. Poor clinical outcomes in numerous cancer types have been associated with its overexpression. As it has been demonstrated to impede tumor growth and metastasis in animal models, inhibiting IGF2BP1 function is a promising strategy for combating cancer. A lead chemical, 7773, which specifically decreased IGF2BP1 RNA binding and cellular activities, was previously identified in a high-throughput screen for effective IGF2BP1 inhibitors. Additional optimization of 7773 described in this manuscript led to the discovery of six compounds that performed equally well or better than 7773. In cell lines with high levels of endogenous IGF2BP1, one of 7773 derivatives, AVJ16, was found to be most efficient at preventing cell migration. Further, AVJ16 was found to be IGF2BP1-specific because it had no effect on cell lines that expressed little or no IGF2BP1 protein. The direct binding of AVJ16 to IGF2BP1 was validated by binding tests, with a 12-fold increase in binding efficiency over the lead compound. AVJ16 was shown to bind to a hydrophobic region at the protein's KH34 di-domain interface between the KH3 and KH4 domains. Overall, the findings imply that AVJ16 is a potent and specific inhibitor of IGF2BP1 activity.


Asunto(s)
Neoplasias , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Movimiento Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
8.
Front Cell Dev Biol ; 11: 1236356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829185

RESUMEN

Introduction: Wnt/ß-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/ß-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/ß-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA. Methods: In this study, we employed iCLIP and RNA sequencing techniques to investigate the role of IGF2BP1 in the post-transcriptional regulation of Wnt/ß-catenin-induced genes at a global level within colorectal cancer (CRC) cells characterized by constitutively active Wnt/ß-catenin signaling. Results and Discussion: In our study, we show that, in contrast to normal cells, CRC cells exhibit a much stronger dependency on IGF2BP1 expression for Wnt/ß-catenin-regulated genes. We show that both untransformed and CRC cells have their unique subsets of Wnt/ß-catenin-regulated genes that IGF2BP1 directly controls through binding to their mRNA. Our iCLIP analysis revealed a significant change in the IGF2BP1-binding sites throughout the target transcriptomes and a significant change in the enrichment of 6-mer motifs associated with IGF2BP1 binding in response to Wnt/ß-catenin signaling. Our study also revealed a signature of IGF2BP1-regulated genes that are significantly associated with colon cancer-free survival in humans, as well as potential targets for CRC treatment. Overall, this study highlights the complex and context-dependent regulation of Wnt/ß-catenin signaling target genes by IGF2BP1 in non-transformed and CRC cells and identifies potential targets for colon cancer treatment.

9.
Chemosphere ; 337: 139346, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379988

RESUMEN

Polymer Matrix Composite (PMC/Plastic Composite) often referred to as Plastic Composite with Natural fibre reinforcement has a huge interest in industries to manufacture components for various applications including medical, transportation, sports equipment etc. In the universe, different types of natural fibres are available which can be used for the reinforcement in PMC/Plastic Composite. So, the selection of appropriate fibre for the PMC/Plastic Composite/Plastic composite is a challenging task, but it can be done using an effective metaheuristic or optimization techniques. But in this type of optimal reinforcement fibre or matrix material selection, the optimization is formulated based on any one of the parameters of the composition. Hence to analyse the various parameter of any PMC/Plastic Composite/Plastic Composite without real manufacturing, a machine learning technique is recommended. The conventional simple or single-layer machine learning techniques were not sufficient to emulate the exact real-time performance of the PMC/Plastic Composite. Thus, a deep multi-layer perceptron (Deep MLP) algorithm is proposed to analyse the various parameter of PMC/Plastic Composite with natural fibre reinforcement. In the proposed technique the MLP is modified by including around 50 hidden layers to enhance its performance. In every hidden layer, the basis function is evaluated and subsequently, the sigmodal function-based activation is calculated. The proposed Deep MLP is utilized to evaluate the various parameters of PMC/Plastic Composite Tensile Strength, Tensile Modulus, Flexural Yield Strength, Flexural Yield Modulus, Young's Modulus, Elastic Modulus and Density. Then the obtained parameter is compared with the actual value and the performance of the proposed Deep MLP is evaluated based on the accuracy, precision, and recall. The proposed Deep MLP attained 87.2%, 87.18%, and 87.22% of accuracy, precision, and recall. Ultimately the proposed system proves that the proposed Deep MLP can perform better for the prediction of various parameters of PMC/Plastic Composite with natural fibre reinforcement.


Asunto(s)
Plásticos , Polímeros , Redes Neurales de la Computación , Módulo de Elasticidad , Algoritmos
10.
Oncogene ; 42(19): 1558-1571, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973517

RESUMEN

Neuroblastoma is a highly metastatic cancer, and thus is one of the leading causes of cancer-related mortalities in pediatric patients. More than 50% of NB cases exhibit 17q21-ter partial chromosomal gain, which is independently associated with poor survival, suggesting the clinical importance of genes at this locus in NB. IGF2BP1 is one such proto-oncogene located at 17q locus, and was found to be upregulated in patients with metastatic NBs. Here, utilizing multiple immunocompetent mouse models, along with our newly developed highly metastatic NB cell line, we demonstrate the role of IGF2BP1 in promoting NB metastasis. Importantly, we show the significance of small extracellular vesicles (EVs) in NB progression, and determine the pro-metastatic function of IGF2BP1 by regulating the NB-EV-protein cargo. Through unbiased proteomic analysis of EVs, we discovered two novel targets (SEMA3A and SHMT2) of IGF2BP1, and reveal the mechanism of IGF2BP1 in NB metastasis. We demonstrate that IGF2BP1 directly binds and governs the expression of SEMA3A/SHMT2 in NB cells, thereby modulating their protein levels in NB-EVs. IGF2BP1-affected levels of SEMA3A and SHMT2 in the EVs, regulate the formation of pro-metastatic microenvironment at potential metastatic organs. Finally, higher levels of SEMA3A/SHMT2 proteins in the EVs derived from NB-PDX models indicate the clinical significance of the two proteins and IGF2BP1-SEMA3A/SHMT2 axis in NB metastasis.


Asunto(s)
Vesículas Extracelulares , Neuroblastoma , Animales , Ratones , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Neuroblastoma/patología , Proteómica , Semaforina-3A/metabolismo , Microambiente Tumoral
11.
Indian J Microbiol ; 62(4): 627-633, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36458219

RESUMEN

This study reports a rare fatal case of Chromobacterium violeceum OUAT_2017 strain infection in an Asiatic elephant calf in India. Necropsy revealed pus-filled nodules in liver, spleen, and lungs. Nutrient broth cultures of nodule content showed sediment of violet pigment whereas smooth, non-diffusible, violet-pigmented, homogeneous colonies appeared on nutrient agar. The organism was found to be non-haemolytic and resistant to 8 of the 24 antibiotics tested in vitro. Partial 16S rRNA gene sequence measuring 1410 bp revealed 97% homology with C. violeceum. The bacterial genome composed of 64.87% of G + C content with total size of 4,681,202 bp. The genome annotation has 42 genes responsible for multidrug antibiotic resistance with the presence of Aminoglycoside-modifying enzymes (AAC (6')) that targets streptomycin and spectinomycin. Our findings corroborated the lethal effect of C. violeceum in a new host (elephant) that enriched scientific information on epidemiological picture and whole genome sequencing as well. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01047-4.

12.
Front Vet Sci ; 9: 931477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909675

RESUMEN

Bovine rotavirus A (boRVA) strains are common causative agents of diarrhea in calves, resulting in economic losses to the beef and dairy industry. Importantly, this virus has a zoonotic relevance due to its ability to reassort with human rotaviruses. In this study, fecal samples were collected from three calves with diarrhea during an outbreak on a dairy farm. The genetic material of boRVA was detected by real-time reverse transcription PCR (rtPCR) in two samples. Then the virus in one of these positive samples was identified as a novel boRVA genotype closely related with human rotavirus strains mainly from the USA based on whole-genome characterization. However, we consider the novel boRVA as the etiological agent of the outbreak due to the lesions associated with a rotavirus infection. Further studies are necessary to clarify the evolutionary advantages that novel rotavirus genotypes may have.

13.
Local Reg Anesth ; 15: 45-55, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833091

RESUMEN

Purpose: Transmuscular quadratus lumborum (TQL) block has been described as an effective option for postoperative analgesia in patients undergoing hip replacement with single injection described as providing analgesia for up to 24 h. We hypothesize that a TQL block, when compared to fascia iliaca block (FIB), will provide better analgesia and less motor block in the initial 24-h postoperative period. Patients and Methods: Fifty patients undergoing elective hip replacement surgery, ASA I-III, were included in the study. Patients were randomized into two groups. Patients in group A received spinal anesthesia followed by FIB. Patients in group B received spinal anesthesia followed by TQLB. Postoperative pain scores and motor block were assessed at 6 and 24 hours. The primary outcome measure was 24 h total morphine consumption. Secondary outcome measures included pain score (VNS) and motor block (modified Bromage scale) at 6 and 24 h postoperatively. Results: There was no statistical difference in morphine consumption between the two groups (p-value 0.699). There was no difference in pain scores at 6 h (p-value 0.540) or 24 h (p-value 0.383). There was no difference in motor block at 6 h (p-value 0.497) or at 24 h (p-value 0.773). Conclusion: Transmuscular quadratus lumborum block along with spinal anesthesia for patients undergoing elective hip replacement surgery does not reduce opioid consumption or motor weakness when compared to fascia iliaca block. The results and conclusion apply to a dose of 20 mL of 0.25% bupivacaine used in each group.

14.
Clin Infect Dis ; 75(1): e368-e379, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323932

RESUMEN

BACKGROUND: In locations where few people have received coronavirus disease 2019 (COVID-19) vaccines, health systems remain vulnerable to surges in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Tools to identify patients suitable for community-based management are urgently needed. METHODS: We prospectively recruited adults presenting to 2 hospitals in India with moderate symptoms of laboratory-confirmed COVID-19 to develop and validate a clinical prediction model to rule out progression to supplemental oxygen requirement. The primary outcome was defined as any of the following: SpO2 < 94%; respiratory rate > 30 BPM; SpO2/FiO2 < 400; or death. We specified a priori that each model would contain three clinical parameters (age, sex, and SpO2) and 1 of 7 shortlisted biochemical biomarkers measurable using commercially available rapid tests (C-reactive protein [CRP], D-dimer, interleukin 6 [IL-6], neutrophil-to-lymphocyte ratio [NLR], procalcitonin [PCT], soluble triggering receptor expressed on myeloid cell-1 [sTREM-1], or soluble urokinase plasminogen activator receptor [suPAR]), to ensure the models would be suitable for resource-limited settings. We evaluated discrimination, calibration, and clinical utility of the models in a held-out temporal external validation cohort. RESULTS: In total, 426 participants were recruited, of whom 89 (21.0%) met the primary outcome; 257 participants comprised the development cohort, and 166 comprised the validation cohort. The 3 models containing NLR, suPAR, or IL-6 demonstrated promising discrimination (c-statistics: 0.72-0.74) and calibration (calibration slopes: 1.01-1.05) in the validation cohort and provided greater utility than a model containing the clinical parameters alone. CONCLUSIONS: We present 3 clinical prediction models that could help clinicians identify patients with moderate COVID-19 suitable for community-based management. The models are readily implementable and of particular relevance for locations with limited resources.


Asunto(s)
COVID-19 , Adulto , COVID-19/diagnóstico , Progresión de la Enfermedad , Humanos , Interleucina-6 , Modelos Estadísticos , Alta del Paciente , Seguridad del Paciente , Pronóstico , Estudios Prospectivos , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Reproducibilidad de los Resultados , SARS-CoV-2
15.
J Vet Diagn Invest ; 34(2): 231-236, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35090373

RESUMEN

Papillomaviruses, which are epitheliotropic and may induce epithelial tumors, have been identified in several avian species, including ducks. An adult female mallard duck (Anas platyrhynchos) was admitted to a wildlife rehabilitation center with 2 beige, well-demarcated, firm masses: one in the subcutis under a wing, and the other on a digit of the right foot. After euthanasia, the masses were fixed in formalin for histologic examination. Both tumors had a lobular organization with cartilage cores surrounded by densely cellular interlacing bundles of spindle cells. Neoplastic chondroblasts in both masses, particularly the digital mass, contained basophilic intranuclear inclusion bodies, which consisted of assembly complexes of icosahedral virions of 44-nm diameter. Next-generation sequencing allowed whole genome assembly of a novel papillomavirus (Anas platyrhynchos papillomavirus 2) related most closely to Fulmarus glacialis papillomavirus 1 (59.49% nucleotide identity). Our case supports the observation that certain papillomaviruses can productively infect mesenchymal cells and induce neoplasia.


Asunto(s)
Patos , Papillomaviridae , Animales , Animales Salvajes , Aves , Femenino , Papillomaviridae/genética
16.
RNA Biol ; 19(1): 26-43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34895045

RESUMEN

Igf2bp1 is an oncofetal RNA binding protein whose expression in numerous types of cancers is associated with upregulation of key pro-oncogenic RNAs, poor prognosis, and reduced survival. Importantly, Igf2bp1 synergizes with mutations in Kras to enhance signalling and oncogenic activity, suggesting that molecules inhibiting Igf2bp1 could have therapeutic potential. Here, we isolate a small molecule that interacts with a hydrophobic surface at the boundary of Igf2bp1 KH3 and KH4 domains, and inhibits binding to Kras RNA. In cells, the compound reduces the level of Kras and other Igf2bp1 mRNA targets, lowers Kras protein, and inhibits downstream signalling, wound healing, and growth in soft agar, all in the absence of any toxicity. This work presents an avenue for improving the prognosis of Igf2bp1-expressing tumours in lung, and potentially other, cancer(s).


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Waste Manag ; 140: 233-244, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34840023

RESUMEN

The disposal and management of sulfur-rich sludges (SRS) are challenging issues for the industries due to their adverse environmental impact. The present study reports the detailed characterizations and assessment of the thermo-kinetics of sludge generated from the sulfuric acid plant. In addition, the sulfur was retrieved with the help of the evaporation-condensation method. In the active devitalization zone (200-400 °C), a substantial mass loss (91 ± 3%) was observed, primarily due to the vaporization of sulfur. The isoconversional model-free methods were used to appraise kinetic parameters for the pyrolytic process. The average activation energy (64.5 kJ mol-1) estimated by the Starink method admired the less energy-intensive process and validated the occurrence of thermochemical reactions at low temperatures. The thermodynamic parameters and frequency factor calculated at 10 °C min-1 were ΔG* = 149.1 kJ mol-1, ΔH* = 59.8 kJ mol-1, ΔS* = -0.157 kJ mol-1K-1, and A = 2.1 × 105 s-1. Criado's Z-master plot revealed the dominance of the diffusion mechanism on the process. The efficient recovery of sulfur (≈96% with purity 99 ± 0.5%) was achieved at 440 °C by evaporation-condensation technique, and the findings closely complemented the kinetic and thermodynamic parameters. This study provides a background for a better understanding SRS and efficient sulfur recovery.


Asunto(s)
Aguas del Alcantarillado , Azufre , Cinética , Ácidos Sulfúricos , Termodinámica , Termogravimetría
18.
Autophagy ; 18(9): 2086-2103, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34964704

RESUMEN

The intestinal epithelial tight junctions (TJs) provide barrier against paracellular permeation of lumenal antigens. Defects in TJ barrier such as increased levels of pore-forming TJ protein CLDN2 (claudin-2) is associated with inflammatory bowel disease. We have previously reported that starvation-induced macroautophagy/autophagy enhances the TJ barrier by degrading pore-forming CLDN2. In this study, we examined the molecular mechanism underlying autophagy-induced CLDN2 degradation. CLDN2 degradation was persistent in multiple modes of autophagy induction. Immunolocalization, membrane fractionation, and pharmacological inhibition studies showed increased clathrin-mediated CLDN2 endocytosis upon starvation. Inhibition of clathrin-mediated endocytosis negated autophagy-induced CLDN2 degradation and enhancement of the TJ barrier. The co-immunoprecipitation studies showed increased association of CLDN2 with clathrin and adaptor protein AP2 (AP2A1 and AP2M1 subunits) as well as LC3 and lysosomes upon starvation, signifying the role of clathrin-mediated endocytosis in autophagy-induced CLDN2 degradation. The expression and phosphorylation of AP2M1 was increased upon starvation. In-vitro, in-vivo (mouse colon), and ex-vivo (human colon) inhibition of AP2M1 activation prevented CLDN2 degradation. AP2M1 knockout prevented autophagy-induced CLDN2 degradation via reduced CLDN2-LC3 interaction. Site-directed mutagenesis revealed that AP2M1 binds to CLDN2 tyrosine motifs (YXXФ) (67-70 and 148-151). Increased baseline expression of CLDN2 and TJ permeability along with reduced CLDN2-AP2M1-LC3 interactions in ATG7 knockout cells validated the role of autophagy in modulation of CLDN2 levels. Acute deletion of Atg7 in mice increased CLDN2 levels and the susceptibility to experimental colitis. The autophagy-regulated molecular mechanisms linking CLDN2, AP2M1, and LC3 may provide therapeutic tools against intestinal inflammation.Abbreviations: Amil: amiloride; AP2: adaptor protein complex 2; AP2A1: adaptor related protein complex 2 subunit alpha 1; AP2M1: adaptor related protein complex 2 subunit mu 1; ATG7: autophagy related 7; CAL: calcitriol; Cas9: CRISPR-associated protein 9; Con: control; CPZ: chlorpromazine; DSS: dextran sodium sulfate; EBSS: Earle's balanced salt solution; IBD: inflammatory bowel disease; TER: trans-epithelial resistance; KD: knockdown; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MßCD: Methyl-ß-cyclodextrin; MET: metformin; MG132: carbobenzoxy-Leu-Leu-leucinal; MTOR: mechanistic target of rapamycin kinase; NT: non target; RAPA: rapamycin; RES: resveratrol; SMER: small-molecule enhancer 28; SQSTM1: sequestosome 1; ST: starvation; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.


Asunto(s)
Claudina-2 , Enfermedades Inflamatorias del Intestino , Complejo 2 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia/fisiología , Clatrina/metabolismo , Claudina-2/metabolismo , Claudinas/genética , Claudinas/metabolismo , Endocitosis , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones , Permeabilidad , Sirolimus , Uniones Estrechas/metabolismo
19.
J Hazard Mater ; 424(Pt B): 127477, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34688003

RESUMEN

In the present work, a detailed thermo-kinetics of hazardous sulfur-rich sludge generated from the corn processing industry was performed for acquiring the optimum parameters for the efficient recovery of sulfur using the evaporation-condensation technique. Sulfur in the sludge was found to be 79 ± 3% (wt%) as estimated by the Bureau of Indian Standards method. A weight loss of 77 ± 3% was found in the active devolatilization zone from ≈ 200-400 °C. The online FTIR confirmed the evolution of mainly sulfur vapors (S8) along with some sulfur dioxide (SO2) and disulfur (S2). The thermogravimetric data (TG) was used to evaluate the kinetic parameters with the help of model-free methods, and Z-master plots determined additional insight into the reaction mechanism. Furthermore, the calculated activation energy (Ea) was used to determine the thermodynamic feasibility. The average Ea values appraised by FM, FWO, sDAEM, and ST models were 55.43, 72.04, 62.33, and 62.67 kJ mol-1, respectively. Overall, 91.2% of sulfur was successfully recovered at 400 °C, having 99 ± 0.5% purity. The approximate cost analysis of the sulfur recovery process was also estimated to check the economic viability. Recovered sulfur could be directly used for industrial and agricultural applications without any further purification.


Asunto(s)
Aguas del Alcantarillado , Zea mays , Cinética , Azufre , Dióxido de Azufre , Termogravimetría
20.
Pathogens ; 10(9)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34578223

RESUMEN

Bovine leukemia virus (BLV) causes Enzootic Bovine Leukosis (EBL), a persistent life-long disease resulting in immune dysfunction and shortened lifespan in infected cattle, severely impacting the profitability of the US dairy industry. Our group has found that 94% of dairy farms in the United States are infected with BLV with an average in-herd prevalence of 46%. This is partly due to the lack of clinical presentation during the early stages of primary infection and the elusive nature of BLV transmission. This study sought to validate a near-complete genomic sequencing approach for reliability and accuracy before determining its efficacy in characterizing the sequence identity of BLV proviral genomes collected from a pilot study made up of 14 animals from one commercial dairy herd. These BLV-infected animals were comprised of seven adult dam/daughter pairs that tested positive by ELISA and qPCR. The results demonstrate sequence identity or divergence of the BLV genome from the same samples tested in two independent laboratories, suggesting both vertical and horizontal transmission in this dairy herd. This study supports the use of Oxford Nanopore sequencing for the identification of viral SNPs that can be used for retrospective genetic contact tracing of BLV transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA