Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Alzheimers Res Ther ; 16(1): 128, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877568

RESUMEN

OBJECTIVES: This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. METHODS: The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. RESULTS: MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. CONCLUSIONS: Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Envejecimiento Saludable , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Envejecimiento/patología , Envejecimiento/fisiología , Persona de Mediana Edad , Biomarcadores , Anciano de 80 o más Años , Estudios Retrospectivos
2.
JAMA Netw Open ; 7(2): e2355800, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38345816

RESUMEN

Importance: Amyloid-related imaging abnormalities (ARIA) are brain magnetic resonance imaging (MRI) findings associated with the use of amyloid-ß-directed monoclonal antibody therapies in Alzheimer disease (AD). ARIA monitoring is important to inform treatment dosing decisions and might be improved through assistive software. Objective: To assess the clinical performance of an artificial intelligence (AI)-based software tool for assisting radiological interpretation of brain MRI scans in patients monitored for ARIA. Design, Setting, and Participants: This diagnostic study used a multiple-reader multiple-case design to evaluate the diagnostic performance of radiologists assisted by the software vs unassisted. The study enrolled 16 US Board of Radiology-certified radiologists to perform radiological reading with (assisted) and without the software (unassisted). The study encompassed 199 retrospective cases, where each case consisted of a predosing baseline and a postdosing follow-up MRI of patients from aducanumab clinical trials PRIME, EMERGE, and ENGAGE. Statistical analysis was performed from April to July 2023. Exposures: Use of icobrain aria, an AI-based assistive software for ARIA detection and quantification. Main Outcomes and Measures: Coprimary end points were the difference in diagnostic accuracy between assisted and unassisted detection of ARIA-E (edema and/or sulcal effusion) and ARIA-H (microhemorrhage and/or superficial siderosis) independently, assessed with the area under the receiver operating characteristic curve (AUC). Results: Among the 199 participants included in this study of radiological reading performance, mean (SD) age was 70.4 (7.2) years; 105 (52.8%) were female; 23 (11.6%) were Asian, 1 (0.5%) was Black, 157 (78.9%) were White, and 18 (9.0%) were other or unreported race and ethnicity. Among the 16 radiological readers included, 2 were specialized neuroradiologists (12.5%), 11 were male individuals (68.8%), 7 were individuals working in academic hospitals (43.8%), and they had a mean (SD) of 9.5 (5.1) years of experience. Radiologists assisted by the software were significantly superior in detecting ARIA than unassisted radiologists, with a mean assisted AUC of 0.87 (95% CI, 0.84-0.91) for ARIA-E detection (AUC improvement of 0.05 [95% CI, 0.02-0.08]; P = .001]) and 0.83 (95% CI, 0.78-0.87) for ARIA-H detection (AUC improvement of 0.04 [95% CI, 0.02-0.07]; P = .001). Sensitivity was significantly higher in assisted reading compared with unassisted reading (87% vs 71% for ARIA-E detection; 79% vs 69% for ARIA-H detection), while specificity remained above 80% for the detection of both ARIA types. Conclusions and Relevance: This diagnostic study found that radiological reading performance for ARIA detection and diagnosis was significantly better when using the AI-based assistive software. Hence, the software has the potential to be a clinically important tool to improve safety monitoring and management of patients with AD treated with amyloid-ß-directed monoclonal antibody therapies.


Asunto(s)
Enfermedad de Alzheimer , Inteligencia Artificial , Humanos , Masculino , Femenino , Anciano , Estudios Retrospectivos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Amiloide , Programas Informáticos , Anticuerpos Monoclonales/uso terapéutico
3.
Neuroradiology ; 66(4): 487-506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240767

RESUMEN

PURPOSE: To assess the performance of the inferior lateral ventricle (ILV) to hippocampal (Hip) volume ratio on brain MRI, for Alzheimer's disease (AD) diagnostics, comparing it to individual automated ILV and hippocampal volumes, and visual medial temporal lobe atrophy (MTA) consensus ratings. METHODS: One-hundred-twelve subjects (mean age ± SD, 66.85 ± 13.64 years) with varying degrees of cognitive decline underwent MRI using a Philips Ingenia 3T. The MTA scale by Scheltens, rated on coronal 3D T1-weighted images, was determined by three experienced radiologists, blinded to diagnosis and sex. Automated volumetry was computed by icobrain dm (v. 5.10) for total, left, right hippocampal, and ILV volumes. The ILV/Hip ratio, defined as the percentage ratio between ILV and hippocampal volumes, was calculated and compared against a normative reference population (n = 1903). Inter-rater agreement, association, classification accuracy, and clinical interpretability on patient level were reported. RESULTS: Visual MTA scores showed excellent inter-rater agreement. Ordinal logistic regression and correlation analyses demonstrated robust associations between automated brain segmentations and visual MTA ratings, with the ILV/Hip ratio consistently outperforming individual hippocampal and ILV volumes. Pairwise classification accuracy showed good performance without statistically significant differences between the ILV/Hip ratio and visual MTA across disease stages, indicating potential interchangeability. Comparison to the normative population and clinical interpretability assessments showed commensurability in classifying MTA "severity" between visual MTA and ILV/Hip ratio measurements. CONCLUSION: The ILV/Hip ratio shows the highest correlation to visual MTA, in comparison to automated individual ILV and hippocampal volumes, offering standardized measures for diagnostic support in different stages of cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Lóbulo Temporal , Humanos , Lóbulo Temporal/patología , Enfermedad de Alzheimer/patología , Ventrículos Laterales , Atrofia/patología , Hipocampo/patología , Imagen por Resonancia Magnética/métodos
4.
Mult Scler ; 30(1): 121-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38140857

RESUMEN

BACKGROUND: The Nine-Hole Peg Test (9HPT) is the golden standard to measure manual dexterity in people with multiple sclerosis (MS). However, administration requires trained personnel and dedicated time during a clinical visit. OBJECTIVES: The objective of this study is to validate a smartphone-based test for remote manual dexterity assessment, the icompanion Finger Dexterity Test (FDT), to be included into the icompanion application. METHODS: A total of 65 MS and 81 healthy subjects were tested, and 20 healthy subjects were retested 2 weeks later. RESULTS: The FDT significantly correlated with the 9HPT (dominant: ρ = 0.62, p < 0.001; non-dominant: ρ = 0.52, p < 0.001). MS subjects had significantly higher FDT scores than healthy subjects (dominant: p = 0.015; non-dominant: p = 0.013), which was not the case for the 9HPT. A significant correlation with age (dominant: ρ = 0.46, p < 0.001; non-dominant: ρ = 0.40, p = 0.002), Expanded Disability Status Scale (EDSS, dominant: ρ = 0.36, p = 0.005; non-dominant: ρ = 0.31, p = 0.024), and disease duration for the non-dominant hand (ρ = 0.31, p = 0.016) was observed. There was a good test-retest reliability in healthy subjects (dominant: r = 0.69, p = 0.001; non-dominant: r = 0.87, p < 0.001). CONCLUSIONS: The icompanion FDT shows a moderate-to-good concurrent validity and test-retest reliability, differentiates between the MS subjects and healthy controls, and correlates with clinical parameters. This test can be implemented into routine MS care for remote follow-up of manual dexterity.


Asunto(s)
Dedos , Esclerosis Múltiple , Humanos , Reproducibilidad de los Resultados , Teléfono Inteligente , Destreza Motora , Extremidad Superior , Esclerosis Múltiple/diagnóstico
5.
Diagnostics (Basel) ; 12(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35885513

RESUMEN

Early diagnosis of COVID-19 is required to provide the best treatment to our patients, to prevent the epidemic from spreading in the community, and to reduce costs associated with the aggravation of the disease. We developed a decision tree model to evaluate the impact of using an artificial intelligence-based chest computed tomography (CT) analysis software (icolung, icometrix) to analyze CT scans for the detection and prognosis of COVID-19 cases. The model compared routine practice where patients receiving a chest CT scan were not screened for COVID-19, with a scenario where icolung was introduced to enable COVID-19 diagnosis. The primary outcome was to evaluate the impact of icolung on the transmission of COVID-19 infection, and the secondary outcome was the in-hospital length of stay. Using EUR 20000 as a willingness-to-pay threshold, icolung is cost-effective in reducing the risk of transmission, with a low prevalence of COVID-19 infections. Concerning the hospitalization cost, icolung is cost-effective at a higher value of COVID-19 prevalence and risk of hospitalization. This model provides a framework for the evaluation of AI-based tools for the early detection of COVID-19 cases. It allows for making decisions regarding their implementation in routine practice, considering both costs and effects.

6.
Breast ; 62: 61-68, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35131644

RESUMEN

BACKGROUND: Although chemotherapy-induced leukoencephalopathy has been described in case and cohort studies, literature remains inconclusive about its prevalence and mechanisms. Therefore, we investigated the presence of leukoencephalopathy after multiagent chemotherapy in women treated for breast cancer and potential underlying neuroinflammatory processes. METHODS: In this exploratory study, 15 chemotherapy-treated and 15 age-matched chemotherapy-naïve patients with early-stage breast cancer, as well as 15 healthy controls underwent simultaneous PET-MR neuroimaging, including T1-weighted MPRAGE, T2-weighted FLAIR and dynamic PET with the 18-kDA translocator protein (TSPO) radioligand [18F]DPA-714. Total and regional (juxtacortical, periventricular, deep white matter and infratentorial) lesion burden were compared between the groups with one-way ANOVA. With paired t-tests, [18F]DPA-714 volume of distribution [VT, including partial volume correction (PVC)] in lesioned and normal appearing white matter (NAWM) were compared within subjects, to investigate inflammation. Finally, two general linear models were used to examine the predictive values of neurofilament light-chain (NfL) serum levels on (1) total lesion burden or (2) PVC [18F]DPA-714 VT of lesions showing elevated inflammation. RESULTS: No significant differences were found in total or localized lesion burden. However, significantly higher (20-45%) TSPO uptake was observed in juxtacortical lesions (p ≤ 0.008, t ≥ 3.90) compared to NAWM in both cancer groups, but only persisted for chemotherapy-treated patients after PVC (p = 0.005, t = 4.30). NfL serum levels were not associated with total lesion volume or tracer uptake in juxtacortical lesions. CONCLUSION: This multimodal neuroimaging study suggests that neuroinflammatory processes could be involved in the development of juxtacortical, but not periventricular or deep white matter, leukoencephalopathy shortly after chemotherapy for early-stage breast cancer.


Asunto(s)
Neoplasias de la Mama , Leucoencefalopatías , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
7.
J Clin Med ; 11(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35159972

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and degenerative disorder of the central nervous system. Accelerated brain volume loss (BVL) has emerged as a promising magnetic resonance imaging marker (MRI) of neurodegeneration, correlating with present and future clinical disability. We have systematically selected MS patients fulfilling 'no evidence of disease activity-3' (NEDA-3) criteria under high-efficacy disease-modifying treatment (DMT) from the database of two Belgian MS centers. BVL between both MRI scans demarcating the NEDA-3 period was assessed and compared with a group of prospectively recruited healthy volunteers who were matched for age and gender. Annualized whole brain volume percentage change was similar between 29 MS patients achieving NEDA-3 and 24 healthy controls (-0.25 ± 0.49 versus -0.24 ± 0.20, p = 0.9992; median follow-up 21 versus 33 months; respectively). In contrast, we found a mean BVL increase of 72%, as compared with the former, in a second control group of MS patients (n = 21) whom had been excluded from the NEDA-3 group due to disease activity (p = 0.1371). Our results suggest that neurodegeneration in MS can slow down to the rate of normal aging once inflammatory disease activity has been extinguished and advocate for an early introduction of high-efficacy DMT to reduce the risk of future clinical disability.

8.
Brain Sci ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34942872

RESUMEN

AIM: To develop a microsimulation model to assess the potential health economic impact of software-assisted MRI in detecting disease activity or progression in relapsing-remitting multiple sclerosis (RRMS) patients. METHODS: We develop a simulated decision analytical model based on a hypothetical cohort of RRMS patients to compare a baseline decision-making strategy in which only clinical evolution (relapses and disability progression) factors are used for therapy decisions in MS follow-up, with decision-making strategies involving MRI. In this context, we include comparisons with a visual radiologic assessment of lesion evolution, software-assisted lesion detection, and software-assisted brain volume loss estimation. The model simulates clinical (EDSS transitions, number of relapses) and subclinical (new lesions and brain volume loss) disease progression and activity, modulated by the efficacy profiles of different disease-modifying therapies (DMTs). The simulated decision-making process includes the possibility to escalate from a low efficacy DMT to a high efficacy DMT or to switch between high efficacy DMTs when disease activity is detected. We also consider potential error factors that may occur during decision making, such as incomplete detection of new lesions, or inexact computation of brain volume loss. Finally, differences between strategies in terms of the time spent on treatment while having undetected disease progression/activity, the impact on the patient's quality of life, and costs associated with health status from a US perspective, are reported. RESULTS: The average time with undetected disease progression while on low efficacy treatment is shortened significantly when using MRI, from around 3 years based on clinical criteria alone, to 2 when adding visual examination of MRI, and down to only 1 year with assistive software. Hence, faster escalation to a high efficacy DMT can be performed when MRI software is added to the radiological reading, which has positive effects in terms of health outcomes. The incremental utility shows average gains of 0.23 to 0.37 QALYs over 10 and 15 years, respectively, when using software-assisted MRI compared to clinical parameters only. Due to long-term health benefits, the average annual costs associated with health status are lower by $1500-$2200 per patient when employing MRI and assistive software. CONCLUSIONS: The health economic burden of MS is high. Using assistive MRI software to detect and quantify lesions and/or brain atrophy has a significant impact on the detection of disease activity, treatment decisions, health outcomes, utilities, and costs in patients with MS.

9.
Front Aging Neurosci ; 13: 746982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690745

RESUMEN

Magnetic Resonance Imaging (MRI) has become part of the clinical routine for diagnosing neurodegenerative disorders. Since acquisitions are performed at multiple centers using multiple imaging systems, detailed analysis of brain volumetry differences between MRI systems and scan-rescan acquisitions can provide valuable information to correct for different MRI scanner effects in multi-center longitudinal studies. To this end, five healthy controls and five patients belonging to various stages of the AD continuum underwent brain MRI acquisitions on three different MRI systems (Philips Achieva dStream 1.5T, Philips Ingenia 3T, and GE Discovery MR750w 3T) with harmonized scan parameters. Each participant underwent two subsequent MRI scans per imaging system, repeated on three different MRI systems within 2 h. Brain volumes computed by icobrain dm (v5.0) were analyzed using absolute and percentual volume differences, Dice similarity (DSC) and intraclass correlation coefficients, and coefficients of variation (CV). Harmonized scans obtained with different scanners of the same manufacturer had a measurement error closer to the intra-scanner performance. The gap between intra- and inter-scanner comparisons grew when comparing scans from different manufacturers. This was observed at image level (image contrast, similarity, and geometry) and translated into a higher variability of automated brain volumetry. Mixed effects modeling revealed a significant effect of scanner type on some brain volumes, and of the scanner combination on DSC. The study concluded a good intra- and inter-scanner reproducibility, as illustrated by an average intra-scanner (inter-scanner) CV below 2% (5%) and an excellent overlap of brain structure segmentation (mean DSC > 0.88).

10.
Brain Sci ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34573193

RESUMEN

In multiple sclerosis (MS), the early detection of disease activity or progression is key to inform treatment changes and could be supported by digital tools. We present a novel CE-marked and FDA-cleared digital care management platform consisting of (1) a patient phone/web application and healthcare professional portal (icompanion) including validated symptom, disability, cognition, and fatigue patient-reported outcomes; and (2) clinical brain magnetic resonance imaging (MRI) quantifications (icobrain ms). We validate both tools using their ability to detect (sub)clinical disease activity (known-groups validity) and real-world data insights. Surveys showed that 95.6% of people with MS (PwMS) were interested in using an MS app, and 98.2% were interested in knowing about MRI changes. The icompanion measures of disability (p < 0.001) and symptoms (p = 0.005) and icobrain ms MRI parameters were sensitive to (sub)clinical differences between MS subtypes. icobrain ms also decreased intra- and inter-rater lesion count variability and increased sensitivity for detecting disease activity/progression from 24% to 76% compared to standard radiological reading. This evidence shows PwMS' interest, the digital care platform's potential to improve the detection of (sub)clinical disease activity and care management, and the feasibility of linking different digital tools into one overarching MS care pathway.

11.
J Alzheimers Dis ; 83(2): 623-639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334402

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) has become important in the diagnostic work-up of neurodegenerative diseases. icobrain dm, a CE-labeled and FDA-cleared automated brain volumetry software, has shown potential in differentiating cognitively healthy controls (HC) from Alzheimer's disease (AD) dementia (ADD) patients in selected research cohorts. OBJECTIVE: This study examines the diagnostic value of icobrain dm for AD in routine clinical practice, including a comparison to the widely used FreeSurfer software, and investigates if combined brain volumes contribute to establish an AD diagnosis. METHODS: The study population included HC (n = 90), subjective cognitive decline (SCD, n = 93), mild cognitive impairment (MCI, n = 357), and ADD (n = 280) patients. Through automated volumetric analyses of global, cortical, and subcortical brain structures on clinical brain MRI T1w (n = 820) images from a retrospective, multi-center study (REMEMBER), icobrain dm's (v.4.4.0) ability to differentiate disease stages via ROC analysis was compared to FreeSurfer (v.6.0). Stepwise backward regression models were constructed to investigate if combined brain volumes can differentiate between AD stages. RESULTS: icobrain dm outperformed FreeSurfer in processing time (15-30 min versus 9-32 h), robustness (0 versus 67 failures), and diagnostic performance for whole brain, hippocampal volumes, and lateral ventricles between HC and ADD patients. Stepwise backward regression showed improved diagnostic accuracy for pairwise group differentiations, with highest performance obtained for distinguishing HC from ADD (AUC = 0.914; Specificity 83.0%; Sensitivity 86.3%). CONCLUSION: Automated volumetry has a diagnostic value for ADD diagnosis in routine clinical practice. Our findings indicate that combined brain volumes improve diagnostic accuracy, using real-world imaging data from a clinical setting.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética , Programas Informáticos , Anciano , Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Femenino , Hipocampo/patología , Humanos , Masculino , Estudios Retrospectivos
12.
Hum Brain Mapp ; 42(14): 4497-4509, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34197028

RESUMEN

Primary education is the incubator for learning academic skills that help children to become a literate, communicative, and independent person. Over this learning period, nonlinear and regional changes in the brain occur, but how these changes relate to academic performance, such as reading ability, is still unclear. In the current study, we analyzed longitudinal T1 MRI data of 41 children in order to investigate typical cortical development during the early reading stage (end of kindergarten-end of grade 2) and advanced reading stage (end of grade 2-middle of grade 5), and to detect putative deviant trajectories in children with dyslexia. The structural brain change was quantified with a reliable measure that directly calculates the local morphological differences between brain images of two time points, while considering the global head growth. When applying this measure to investigate typical cortical development, we observed that left temporal and temporoparietal regions belonging to the reading network exhibited an increase during the early reading stage and stabilized during the advanced reading stage. This suggests that the natural plasticity window for reading is within the first years of primary school, hence earlier than the typical period for reading intervention. Concerning neurotrajectories in children with dyslexia compared to typical readers, we observed no differences in gray matter development of the left reading network, but we found different neurotrajectories in right IFG opercularis (during the early reading stage) and in right isthmus cingulate (during the advanced reading stage), which could reflect compensatory neural mechanisms.


Asunto(s)
Corteza Cerebral , Desarrollo Infantil , Dislexia , Red Nerviosa , Neuroimagen , Lectura , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Niño , Desarrollo Infantil/fisiología , Preescolar , Dislexia/diagnóstico por imagen , Dislexia/patología , Dislexia/fisiopatología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo
13.
Neuroimage Clin ; 31: 102707, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111718

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the central nervous system. Its diagnosis nowadays commonly includes performing an MRI scan, as it is the most sensitive imaging test for MS. MS plaques are commonly identified from fluid-attenuated inversion recovery (FLAIR) images as hyperintense regions that are highly varying in terms of their shapes, sizes and locations, and are routinely classified in accordance to the McDonald criteria. Recent years have seen an increase in works that aimed at development of various semi-automatic and automatic methods for detection, segmentation and classification of MS plaques. In this paper, we present an automatic combined method, based on two pipelines: a traditional unsupervised machine learning technique and a deep-learning attention-gate 3D U-net network. The deep-learning network is specifically trained to address the weaker points of the traditional approach, namely difficulties in segmenting infratentorial and juxtacortical plaques in real-world clinical MRIs. It was trained and validated on a multi-center multi-scanner dataset that contains 159 cases, each with T1 weighted (T1w) and FLAIR images, as well as manual delineations of the MS plaques, segmented and validated by a panel of raters. The detection rate was quantified using lesion-wise Dice score. A simple label fusion is implemented to combine the output segmentations of the two pipelines. This combined method improves the detection of infratentorial and juxtacortical lesions by 14% and 31% respectively, in comparison to the unsupervised machine learning pipeline that was used as a performance assessment baseline.


Asunto(s)
Esclerosis Múltiple , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Aprendizaje Automático no Supervisado
14.
Neuroimage Clin ; 30: 102632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33770549

RESUMEN

In multiple sclerosis, the interplay of neurodegeneration, demyelination and inflammation leads to changes in neurophysiological functioning. This study aims to characterize the relation between reduced brain volumes and spectral power in multiple sclerosis patients and matched healthy subjects. During resting-state eyes closed, we collected magnetoencephalographic data in 67 multiple sclerosis patients and 47 healthy subjects, matched for age and gender. Additionally, we quantified different brain volumes through magnetic resonance imaging (MRI). First, a principal component analysis of MRI-derived brain volumes demonstrates that atrophy can be largely described by two components: one overall degenerative component that correlates strongly with different cognitive tests, and one component that mainly captures degeneration of the cortical grey matter that strongly correlates with age. A multimodal correlation analysis indicates that increased brain atrophy and lesion load is accompanied by increased spectral power in the lower alpha (8-10 Hz) in the temporoparietal junction (TPJ). Increased lower alpha power in the TPJ was further associated with worse results on verbal and spatial working memory tests, whereas an increased lower/upper alpha power ratio was associated with slower information processing speed. In conclusion, multiple sclerosis patients with increased brain atrophy, lesion and thalamic volumes demonstrated increased lower alpha power in the TPJ and reduced cognitive abilities.


Asunto(s)
Esclerosis Múltiple , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
15.
Neuroimage Clin ; 26: 102243, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32193172

RESUMEN

Brain volumes computed from magnetic resonance images have potential for assisting with the diagnosis of individual dementia patients, provided that they have low measurement error and high reliability. In this paper we describe and validate icobrain dm, an automatic tool that segments brain structures that are relevant for differential diagnosis of dementia, such as the hippocampi and cerebral lobes. Experiments were conducted in comparison to the widely used FreeSurfer software. The hippocampus segmentations were compared against manual segmentations, with significantly higher Dice coefficients obtained with icobrain dm (25-75th quantiles: 0.86-0.88) than with FreeSurfer (25-75th quantiles: 0.80-0.83). Other brain structures were also compared against manual delineations, with icobrain dm showing lower volumetric errors overall. Test-retest experiments show that the precision of all measurements is higher for icobrain dm than for FreeSurfer except for the parietal cortex volume. Finally, when comparing volumes obtained from Alzheimer's disease patients against age-matched healthy controls, all measures achieved high diagnostic performance levels when discriminating patients from cognitively healthy controls, with the temporal cortex volume measured by icobrain dm reaching the highest diagnostic performance level (area under the receiver operating characteristic curve = 0.99) in this dataset.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Programas Informáticos , Humanos
16.
Sci Rep ; 9(1): 2915, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814528

RESUMEN

Mass spectrometry imaging (MSI) and histology are complementary analytical tools. Integration of the two imaging modalities can enhance the spatial resolution of the MSI beyond its experimental limits. Patch-based super resolution (PBSR) is a method where high spatial resolution features from one image modality guide the reconstruction of a low resolution image from a second modality. The principle of PBSR lies in image redundancy and aims at finding similar pixels in the neighborhood of a central pixel that are then used to guide reconstruction of the central pixel. In this work, we employed PBSR to increase the resolution of MSI. We validated the proposed pipeline by using a phantom image (micro-dissected logo within a tissue) and mouse cerebellum samples. We compared the performance of the PBSR with other well-known methods: linear interpolation (LI) and image fusion (IF). Quantitative and qualitative assessment showed advantage over the former and comparability with the latter. Furthermore, we demonstrated the potential applicability of PBSR in a clinical setting by accurately integrating structural (i.e., histological) and molecular (i.e., MSI) information from a case study of a dog liver.


Asunto(s)
Cerebelo/patología , Diagnóstico por Imagen/métodos , Aumento de la Imagen/métodos , Hígado/patología , Algoritmos , Animales , Técnicas de Laboratorio Clínico , Perros , Humanos , Espectrometría de Masas/métodos , Ratones , Fantasmas de Imagen
17.
Neuroimage ; 191: 587-595, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30772399

RESUMEN

OBJECTIVES: To demonstrate the feasibility of 7 T magnetic resonance spectroscopic imaging (MRSI), combined with patch-based super-resolution (PBSR) reconstruction, for high-resolution multi-metabolite mapping of gliomas. MATERIALS AND METHODS: Ten patients with WHO grade II, III and IV gliomas (6/4, male/female; 45 ±â€¯9 years old) were prospectively measured between 2014 and 2018 on a 7 T whole-body MR imager after routine 3 T magnetic resonance imaging (MRI) and positron emission tomography (PET). Free induction decay MRSI with a 64 × 64-matrix and a nominal voxel size of 3.4 × 3.4 × 8 mm³ was acquired in six minutes, along with standard T1/T2-weighted MRI. Metabolic maps were obtained via spectral LCmodel processing and reconstructed to 0.9 × 0.9 × 8 mm³ resolutions via PBSR. RESULTS: Metabolite maps obtained from combined 7 T MRSI and PBSR resolved the density of metabolic activity in the gliomas in unprecedented detail. Particularly in the more heterogeneous cases (e.g. post resection), metabolite maps enabled the identification of complex metabolic activities, which were in topographic agreement with PET enhancement. CONCLUSIONS: PBSR-MRSI combines the benefits of ultra-high-field MR systems, cutting-edge MRSI, and advanced postprocessing to allow millimetric resolution molecular imaging of glioma tissue beyond standard methods. An ideal example is the accurate imaging of glutamine, which is a prime target of modern therapeutic approaches, made possible due to the higher spectral resolution of 7 T systems.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Imagen Molecular/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioma/metabolismo , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad
18.
J Magn Reson Imaging ; 49(4): 955-965, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30605253

RESUMEN

BACKGROUND: Diffusion tensor imaging (DTI) parameters, such as fractional anisotropy (FA), allow examining the structural integrity of the brain. However, the true value of these parameters may be confounded by variability in MR hardware, acquisition parameters, and image quality. PURPOSE: To examine the effects of confounding factors on FA and to evaluate the feasibility of statistical methods to model and reduce multicenter variability. STUDY TYPE: Longitudinal multicenter study. PHANTOM: DTI single strand phantom (HQ imaging). FIELD STRENGTH/SEQUENCE: 3T diffusion tensor imaging. ASSESSMENTS: Thirteen European imaging centers participated. DTI scans were acquired every 6 months and whenever maintenance or upgrades to the system were performed. A total of 64 scans were acquired in 2 years, obtained by three scanner vendors, using six individual head coils, and 12 software versions. STATISTICAL TESTS: The variability in FA was assessed by the coefficients of variation (CoV). Several linear mixed effects models (LMEM) were developed and compared by means of the Akaike Information Criterion (AIC). RESULTS: The CoV was 2.22% for mean FA and 18.40% for standard deviation of FA. The variables "site" (P = 9.26 × 10-5 ), "vendor" (P = 2.18 × 10-5 ), "head coil" (P = 9.00 × 10-4 ), "scanner drift," "bandwidth" (P = 0.033), "TE" (P = 8.20 × 10-6 ), "SNR" (P = 0.029) and "mean residuals" (P = 6.50 × 10-4 ) had a significant effect on the variability in mean FA. The variables "site" (P = 4.00 × 10-4 ), "head coil" (P = 2.00 × 10-4 ), "software" (P = 0.014), and "mean voxel outlier intensity count" (P = 1.10 × 10-4 ) had a significant effect on the variability in standard deviation of FA. The mean FA was best predicted by an LMEM that included "vendor" and the interaction term of "SNR" and "head coil" as model factors (AIC -347.98). In contrast, the standard deviation of FA was best predicted by an LMEM that included "vendor," "bandwidth," "TE," and the interaction term between "SNR" and "head coil" (AIC -399.81). DATA CONCLUSION: Our findings suggest that perhaps statistical models seem promising to model the variability in quantitative DTI biomarkers for clinical routine and multicenter studies. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:955-965.


Asunto(s)
Imagen de Difusión Tensora/normas , Radiología/normas , Anisotropía , Encéfalo/diagnóstico por imagen , Europa (Continente) , Humanos , Modelos Lineales , Estudios Longitudinales , Modelos Estadísticos , Neuronas/metabolismo , Fantasmas de Imagen , Relación Señal-Ruido , Programas Informáticos
19.
Neuroimage Clin ; 19: 516-526, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29984160

RESUMEN

Background: Although brain atrophy is considered to be a downstream marker of Alzheimer's disease (AD), subtle changes may allow to identify healthy subjects at risk of developing AD. As the ability to select at-risk persons is considered to be important to assess the efficacy of drugs and as MRI is a widely available imaging technique we have recently developed a reliable segmentation algorithm for the corpus callosum (CC). Callosal atrophy within AD has been hypothesized to reflect both myelin breakdown and Wallerian degeneration. Methods: We applied our fully automated segmentation and feature extraction algorithm to two datasets: the OASIS database consisting of 316 healthy controls (HC) and 100 patients affected by either mild cognitive impairment (MCI) or Alzheimer's disease dementia (ADD) and a second database that was collected at the Memory Clinic of Hospital Network Antwerp and consists of 181 subjects, including healthy controls, subjects with subjective cognitive decline (SCD), MCI, and ADD. All subjects underwent (among others) neuropsychological testing including the Mini-Mental State Examination (MMSE). The extracted features were the callosal area (CCA), the circularity (CIR), the corpus callosum index (CCI) and the thickness profile. Results: CIR and CCI differed significantly between most groups. Furthermore, CIR allowed us to discriminate between SCD and HC with an accuracy of 77%. The more detailed callosal thickness profile provided little added value towards the discrimination of the different AD stages. The largest effect of normal ageing on callosal thickness was found in the frontal callosal midbody. Conclusions: To the best of our knowledge, this is the first study investigating changes in corpus callosum morphometry in normal ageing and AD by exploring both summarizing features (CCA, CIR and CCI) and the complete CC thickness profile in two independent cohorts using a completely automated algorithm. We showed that callosal circularity allows to discriminate between an important subgroup of the early AD spectrum (SCD) and age and sex matched healthy controls.


Asunto(s)
Enfermedad de Alzheimer/patología , Atrofia/patología , Biomarcadores , Cuerpo Calloso/patología , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Algoritmos , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/patología , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
20.
Neuroimage Clin ; 19: 734-744, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30003026

RESUMEN

Pediatric brain volumetric analysis based on Magnetic Resonance Imaging (MRI) is of particular interest in order to understand the typical brain development and to characterize neurodevelopmental disorders at an early age. However, it has been shown that the results can be biased due to head motion, inherent to pediatric data, and due to the use of methods based on adult brain data that are not able to accurately model the anatomical disparity of pediatric brains. To overcome these issues, we proposed childmetrix, a tool developed for the analysis of pediatric neuroimaging data that uses an age-specific atlas and a probabilistic model-based approach in order to segment the gray matter (GM) and white matter (WM). The tool was extensively validated on 55 scans of children between 5 and 6 years old (including 13 children with developmental dyslexia) and 10 pairs of test-retest scans of children between 6 and 8 years old and compared with two state-of-the-art methods using an adult atlas, namely icobrain (applying a probabilistic model-based segmentation) and Freesurfer (applying a surface model-based segmentation). The results obtained with childmetrix showed a better reproducibility of GM and WM segmentations and a better robustness to head motion in the estimation of GM volume compared to Freesurfer. Evaluated on two subjects, childmetrix showed good accuracy with 82-84% overlap with manual segmentation for both GM and WM, thereby outperforming the adult-based methods (icobrain and Freesurfer), especially for the subject with poor quality data. We also demonstrated that the adult-based methods needed double the number of subjects to detect significant morphological differences between dyslexics and typical readers. Once further developed and validated, we believe that childmetrix would provide appropriate and reliable measures for the examination of children's brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...