Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 116969, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908200

RESUMEN

Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (∼IC50(4 h) 26 µg/ml, ∼IC50(24 h) 6-8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD's safety profile, paving the way for further exploration of CBD's therapeutic applications and potential adverse effects.

2.
Environ Int ; 189: 108728, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850672

RESUMEN

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.


Asunto(s)
Compuestos de Bencidrilo , Monitoreo del Ambiente , Contaminantes Ambientales , Fenoles , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Monitoreo del Ambiente/métodos , Animales , Humanos , Disruptores Endocrinos/toxicidad
3.
Toxicol In Vitro ; 99: 105882, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936441

RESUMEN

The aim of this study was to investigate the effects of tert-butylquinone (TBQ) and its alkylthio and arylthio derivatives on DNA in vitro, using acellular and cellular test systems. Direct interaction with DNA was studied using the plasmid pUC19. Cytotoxic (MTS assay) and genotoxic (comet assay and γH2AX focus assays) effects, and their influence on the cell cycle were studied in the HepG2 cell line. Our results show that TBQ and its derivatives did not directly interact with DNA. The strongest cytotoxic effect on the HepG2 cells was observed for the derivative 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzoquinone (IC50 64.68 and 55.64 µM at 24-h and 48-h treatment, respectively). The tested derivatives did not significantly influence the cell cycle distribution in the exposed cellular populations. However, all derivatives showed a genotoxic activity stronger than that of TBQ in the comet assay, with 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzoquinone producing the strongest effect. The same derivative also induced DNA double-strand breaks in the γH2AX focus assay.


Asunto(s)
Benzoquinonas , Ensayo Cometa , Daño del ADN , Humanos , Benzoquinonas/toxicidad , Daño del ADN/efectos de los fármacos , Células Hep G2 , Neoplasias Hepáticas , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Carcinoma Hepatocelular , Histonas
4.
Chem Biol Interact ; 394: 110977, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548214

RESUMEN

The applications of magnetic nanoparticles (MNPs) as biocatalysts in different biomedical areas have been evolved very recently. One of the main challenges in this field is to design affective MNPs surfaces with catalytically active atomic centres, while producing minimal toxicological side effects on the hosting cell or tissues. MNPs of vanadium spinel ferrite (VFe2O4) are a promising material for mimicking the action of natural enzymes in degrading harmful substrates due to the presence of active V5+ centres. However, the toxicity of this material has not been yet studied in detail enough to grant biomedical safety. In this work, we have extensively measured the structural, compositional, and magnetic properties of a series of VxFe3-xO4 spinel ferrite MNPs to assess the surface composition and oxidation state of V atoms, and also performed systematic and extensive in vitro cytotoxicity and genotoxicity testing required to assess their safety in potential clinical applications. We could establish the presence of V5+ at the particle surface even in water-based colloidal samples at pH 7, as well as different amounts of V2+ and V3+ substitution at the A and B sites of the spinel structure. All samples showed large heating efficiency with Specific Loss Power values up to 400 W/g (H0 = 30 kA/m; f = 700 kHz). Samples analysed for safety in human hepatocellular carcinoma (HepG2) cell line with up to 24h of exposure showed that these MNPs did not induce major genomic abnormalities such as micronuclei, nuclear buds, or nucleoplasmic bridges (MNIs, NBUDs, and NPBs), nor did they cause DNA double-strand breaks (DSBs) or aneugenic effects-types of damage considered most harmful to cellular genetic material. The present study is an essential step towards the use of these type of nanomaterials in any biomedical or clinical application.


Asunto(s)
Compuestos Férricos , Humanos , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Células Hep G2 , Daño del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Calor , Vanadio/química , Vanadio/toxicidad , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Calefacción , Nanopartículas/química , Nanopartículas/toxicidad
5.
Environ Int ; 182: 108285, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972530

RESUMEN

Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.


Asunto(s)
Gases em Plasma , Virus , Animales , Humanos , Agua , Gases em Plasma/farmacología , Inactivación de Virus
6.
ACS Appl Polym Mater ; 5(7): 5270-5279, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37469879

RESUMEN

Cationic charge has been widely used to increase polymer adsorption and flocculation of dispersions or to provide antimicrobial activity. In this work, cationization of hydroxyethyl cellulose (HEC) and polyvinyl alcohol (PVA) was achieved by covalently coupling betaine hydrochloride and choline chloride to the polymer backbones through carbonyl diimidazole (CDI) activation. Two approaches for activation were investigated. CDI in excess was used to activate the polymers' hydroxyls followed by carbonate formation with choline chloride, or CDI was used to activate betaine hydrochloride, followed by ester formation with the polymers' hydroxyls. The first approach led to a more significant cross-linking of PVA, but not of HEC, and the second approach successfully formed ester bonds. Cationic, nitrogen-bearing materials with varying degrees of substitution were obtained in moderate to high yields. These materials were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, polyelectrolyte titration, and kaolin flocculation. Their dose-dependent effect on the growth of Staphylococcus aureus and Pseudomonas aeruginosa, and L929 mouse fibroblasts, was investigated. Significant differences were found between the choline- and betaine-containing polymers, and especially, the choline carbonate esters of HEC strongly inhibited the growth of S. aureus in vitro but were also cytotoxic to fibroblasts. Fibroblast cytotoxicity was also observed for betaine esters of PVA but not for those of HEC. The materials could potentially be used as antimicrobial agents for instance by coating surfaces, but more investigations into the interaction between cells and polysaccharides are necessary to clarify why and how bacterial and human cells are inhibited or killed by these derivatives, especially those containing choline.

7.
Polymers (Basel) ; 13(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502880

RESUMEN

Succinylation of proteins is a commonly encountered reaction in biology and introduces negatively charged carboxylates on previously basic primary amine groups of amino acid residues. In analogy, this work investigates the succinylation of primary amines of the synthetic polyelectrolyte polyallylamine (PAA). It investigates the influence of the degree of succinylation on the cytotoxicity and antibacterial activity of the resulting polymers. Succinylation was performed in water with varying amounts of succinic anhydride and at different pH values. The PAA derivatives were analyzed in detail with respect to molecular structure using nuclear magnetic resonance and infrared absorbance spectroscopy. Polyelectrolyte and potentiometric charge titrations were used to elucidate charge ratios between primary amines and carboxylates in the polymers. The obtained materials were then evaluated with respect to their minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa. The biocompatibility was assessed using mouse L929 fibroblasts. The degree of succinylation decreased cytotoxicity but more significantly reduced antibacterial efficacy, demonstrating the sensitivity of the fibroblast cells against this type of ampholytic polyelectrolytes. The obtained polymers were finally electrospun into microfiber webs in combination with neutral water-soluble polyvinyl alcohol. The resulting non-woven could have the potential to be used as wound dressing materials or coatings.

8.
Materials (Basel) ; 14(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34443242

RESUMEN

Chitosan (Chi) and 77KS, a lysine-derived surfactant, form polyelectrolyte complexes that reverse their charge from positive to negative at higher 77KS concentrations, forming aggregates that have been embedded with amoxicillin (AMOX). Dispersion of this complex was used to coat polydimethylsiloxane (PDMS) films, with an additional layer of anionic and hydrophilic hyaluronic acid (HA) as an outer adsorbate layer to enhance protein repulsion in addition to antimicrobial activity by forming a highly hydrated layer in combination with steric hindrance. The formed polysaccharide-based bilayer on PDMS was analyzed by water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and surface zeta (ζ)-potential. All measurements show the existence and adhesion of the two layers on the PDMS surface. Part of this study was devoted to understanding the underlying protein adsorption phenomena and identifying the mechanisms associated with biofouling. Thus, the adsorption of a mixed-protein solution (bovine serum albumin, fibrinogen, γ-globulin) on PDMS surfaces was studied to test the antifouling properties. The adsorption experiments were performed using a quartz crystal microbalance with dissipation monitoring (QCM-D) and showed improved antifouling properties by these polysaccharide-based bilayer coatings compared to a reference or for only one layer, i.e., the complex. This proves the benefit of a second hyaluronic acid layer. Microbiological and biocompatibility tests were also performed on real samples, i.e., silicone discs, showing the perspective of the prepared bilayer coating for medical devices such as prostheses, catheters (balloon angioplasty, intravascular), delivery systems (sheaths, implants), and stents.

9.
Foods ; 10(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207931

RESUMEN

The present study addresses the chemoprotective effects of xanthohumol (XN), a prenylated flavonoid found in the female inflorescences (hops) of the plant Humulus lupulus L., against the carcinogenic food contaminant aflatoxin B1 (AFB1). The chemical reactions of XN and its derivatives (isoxanthohumol (IXN), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN)) with the AFB1 metabolite, aflatoxin B1 exo-8,9-epoxide (AFBO), were investigated in silico, by calculating activation free energies (ΔG‡) at the Hartree-Fock level of theory in combination with the 6-311++G(d,p) basis set and two implicit solvation models. The chemoprotective effects of XN were investigated in vitro in the metabolically competent HepG2 cell line, analyzing its influence on AFB1-induced cytotoxicity using the MTS assay, genotoxicity using the comet and γH2AX assays, and cell cycle modulation using flow cytometry. Our results show that the ΔG‡ required for the reactions of XN and its derivatives with AFBO are comparable to the ΔG‡ required for the reaction of AFBO with guanine, indicating that XN, IXN, 8-PN, and 6-PN could act as scavengers of AFBO, preventing DNA adduct formation and DNA damage induction. This was also reflected in the results from the in vitro experiments, where a reduction in AFB1-induced cytotoxicity and DNA single-strand and double-strand breaks was observed in cells exposed to combinations of AFB1 and XN, highlighting the chemoprotective effects of this phytochemical.

10.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33808994

RESUMEN

(1) Background: The voltage-gated potassium channel KV10.1 (Eag1) is considered a near- universal tumour marker and represents a promising new target for the discovery of novel anticancer drugs. (2) Methods: We utilized the ligand-based drug discovery methodology using 3D pharmacophore modelling and medicinal chemistry approaches to prepare a novel structural class of KV10.1 inhibitors. Whole-cell patch clamp experiments were used to investigate potency, selectivity, kinetics and mode of inhibition. Anticancer activity was determined using 2D and 3D cell-based models. (3) Results: The virtual screening hit compound ZVS-08 discovered by 3D pharmacophore modelling exhibited an IC50 value of 3.70 µM against KV10.1 and inhibited the channel in a voltage-dependent manner consistent with the action of a gating modifier. Structural optimization resulted in the most potent KV10.1 inhibitor of the series with an IC50 value of 740 nM, which was potent on the MCF-7 cell line expressing high KV10.1 levels and low hERG levels, induced significant apoptosis in tumour spheroids of Colo-357 cells and was not mutagenic. (4) Conclusions: Computational ligand-based drug design methods can be successful in the discovery of new potent KV10.1 inhibitors. The main problem in the field of KV10.1 inhibitors remains selectivity against the hERG channel, which needs to be addressed in the future also with target-based drug design methods.

11.
Toxins (Basel) ; 13(2)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540511

RESUMEN

In the last decade, it has become evident that complex mixtures of cyanobacterial bioactive substances, simultaneously present in blooms, often exert adverse effects that are different from those of pure cyanotoxins, and awareness has been raised on the importance of studying complex mixtures and chemical interactions. We aimed to investigate cytotoxic and genotoxic effects of complex extracts from laboratory cultures of cyanobacterial species from different orders (Cylindrospermopsis raciborskii, Aphanizomenon gracile, Microcystis aeruginosa, M. viridis, M. ichtyoblabe, Planktothrix agardhii, Limnothrix redekei) and algae (Desmodesmus quadricauda), and examine possible relationships between the observed effects and toxin and retinoic acid (RA) content in the extracts. The cytotoxic and genotoxic effects of the extracts were studied in the human hepatocellular carcinoma HepG2 cell line, using the MTT assay, and the comet and cytokinesis-block micronucleus (cytome) assays, respectively. Liquid chromatography electrospray ionization mass spectrometry (LC/ESI-MS) was used to detect toxins (microcystins (MC-LR, MC-RR, MC-YR) and cylindrospermopsin) and RAs (ATRA and 9cis-RA) in the extracts. Six out of eight extracts were cytotoxic (0.04-2 mgDM/mL), and five induced DNA strand breaks at non-cytotoxic concentrations (0.2-2 mgDM/mL). The extracts with genotoxic activity also had the highest content of RAs and there was a linear association between RA content and genotoxicity, indicating their possible involvement; however further research is needed to identify and confirm the compounds involved and to elucidate possible genotoxic effects of RAs.


Asunto(s)
Alcaloides/toxicidad , Chlorophyta/metabolismo , Cianobacterias/metabolismo , Daño del ADN , Microcistinas/toxicidad , Micronúcleos con Defecto Cromosómico/inducido químicamente , Tretinoina/toxicidad , Alcaloides/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Ensayo Cometa , Toxinas de Cianobacterias , Células Hep G2 , Humanos , Microcistinas/aislamiento & purificación , Pruebas de Micronúcleos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Tretinoina/aislamiento & purificación
12.
Front Microbiol ; 12: 618209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584622

RESUMEN

Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.

13.
Environ Pollut ; 265(Pt B): 114965, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32559695

RESUMEN

Cylindrospermopsin (CYN) is an emerging cyanotoxin increasingly being found in freshwater cyanobacterial blooms worldwide. Humans and animals are exposed to CYN through the consumption of contaminated water and food as well as occupational and recreational water activities; therefore, it represents a potential health threat. It exhibits genotoxic effects in metabolically active test systems, thus it is considered as pro-genotoxic. In the present study, the advanced 3D cell model developed from human hepatocellular carcinoma (HepG2) cells was used for the evaluation of CYN cyto-/genotoxic activity. Spheroids were formed by forced floating method and were cultured for three days under static conditions prior to exposure to CYN (0.125, 0.25 and 0.5 µg/mL) for 72 h. CYN influence on spheroid growth was measured daily and cell survival was determined by MTS assay and live/dead staining. The influence on cell proliferation, cell cycle alterations and induction of DNA damage (γH2AX) was determined using flow cytometry. Further, the expression of selected genes (qPCR) involved in the metabolism of xenobiotics, proliferation, DNA damage response, apoptosis and oxidative stress was studied. Results revealed that CYN dose-dependently reduced the size of spheroids and affected cell division by arresting HepG2 cells in G1 phase of the cell cycle. No induction of DNA double strand breaks compared to control was determined at applied conditions. The analysis of gene expression revealed that CYN significantly deregulated genes encoding phase I (CYP1A1, CYP1A2, CYP3A4, ALDH3A) and II (NAT1, NAT2, SULT1B1, SULT1C2, UGT1A1, UGT2B7) enzymes as well as genes involved in cell proliferation (PCNA, TOP2α), apoptosis (BBC3) and DNA damage response (GADD45a, CDKN1A, ERCC4). The advanced 3D HepG2 cell model due to its more complex structure and improved cellular interactions provides more physiologically relevant information and more predictive data for human exposure, and can thus contribute to more reliable genotoxicity assessment of chemicals including cyanotoxins.


Asunto(s)
Arilamina N-Acetiltransferasa , Neoplasias Hepáticas , Alcaloides , Animales , Toxinas Bacterianas , Toxinas de Cianobacterias , Daño del ADN , Células Hep G2 , Humanos , Toxinas Marinas , Microcistinas , Uracilo/análogos & derivados
14.
Toxins (Basel) ; 12(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244372

RESUMEN

Ever-expanding environmental pollution is causing a rise in cyanobacterial blooms and the accumulation of plastics in water bodies. Consequently, exposure to mixtures of cyanotoxins and plastic-related contaminants such as bisphenols (BPs) is of increasing concern. The present study describes genotoxic effects induced by co-exposure to one of the emerging cyanotoxins-cylindrospermopsin (CYN)-(0.5 µg/mL) and BPs (bisphenol A (BPA), S (BPS), and F (BPF); (10 µg/mL)) in HepG2 cells after 24 and 72 h of exposure. The cytotoxicity was evaluated with an MTS assay and genotoxicity was assessed through the measurement of the induction of DNA double strand breaks (DSB) with the γH2AX assay. The deregulation of selected genes (xenobiotic metabolic enzyme genes, DNA damage, and oxidative response genes) was assessed using qPCR. The results showed a moderate reduction of cell viability and induction of DSBs after 72 h of exposure to the CYN/BPs mixtures and CYN alone. None of the BPs alone reduced cell viability or induced DSBs. No significant difference was observed between CYN and CYN/BPs exposed cells, except with CYN/BPA, where the antagonistic activity of BPA against CYN was indicated. The deregulation of some of the tested genes (CYP1A1, CDKN1A, GADD45A, and GCLC) was more pronounced after exposure to the CYN/BPs mixtures compared to single compounds, suggesting additive or synergistic action. The present study confirms the importance of co-exposure studies, as our results show pollutant mixtures to induce effects different from those confirmed for single compounds.


Asunto(s)
Alcaloides/toxicidad , Cianobacterias/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Fenoles/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Alcaloides/metabolismo , Supervivencia Celular/efectos de los fármacos , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Roturas del ADN de Doble Cadena , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Histonas/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos
15.
Environ Sci Pollut Res Int ; 23(15): 14751-61, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26392091

RESUMEN

In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.


Asunto(s)
Antineoplásicos/toxicidad , Roturas del ADN de Doble Cadena/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Mutagenicidad
16.
Toxicon ; 110: 56-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26704293

RESUMEN

Melittin (MEL) is the main constituent and principal toxin of bee venom. It is a small basic peptide, consisting of a known amino acid sequence, with powerful haemolytic activity. Since MEL is a nonspecific cytolytic peptide that attacks lipid membranes thus leading to toxicity, the presumption is that it could have significant therapeutic benefits. The aim was to evaluate the cyto/genotoxic effects of MEL in human peripheral blood lymphocytes (HPBLs) and the molecular mechanisms involved using a multi-biomarker approach. We found that MEL was cytotoxic for HPBLs in a dose- and time-dependent manner. It also induced morphological changes in the cell membrane, granulation and lysis of exposed cells. After treating HPBLs with non-cytotoxic concentrations of MEL, we observed increased DNA damage including oxidative DNA damage as well as increased formation of micronuclei and nuclear buds, and decreased lymphocyte proliferation determined by comet and micronucleus assays. The observed genotoxicity coincided with increased formation of reactive oxygen species, reduction of glutathione level, increased lipid peroxidation and phospholipase C activity, showing the induction of oxidative stress. MEL also modulated the expression of selected genes involved in DNA damage response (TP53, CDKN1A, GADD45α, MDM), oxidative stress (CAT, SOD1, GPX1, GSR and GCLC) and apoptosis (BAX, BCL-2, CAS-3 and CAS-7). Results indicate that MEL is genotoxic to HPBLs and provide evidence that oxidative stress is involved in its DNA damaging effects. MEL toxicity towards normal cells has to be considered if used for potential therapeutic purposes.


Asunto(s)
Aberraciones Cromosómicas/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Linfocitos/efectos de los fármacos , Meliteno/toxicidad , Mutágenos/toxicidad , Oxidantes/toxicidad , Estrés Oxidativo , Adulto , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Células Cultivadas , Ensayo Cometa , Daño del ADN , Glutatión/antagonistas & inhibidores , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Linfocitos/citología , Linfocitos/metabolismo , Masculino , Pruebas de Micronúcleos , Oxidación-Reducción , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA