Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 5487, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942798

RESUMEN

Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.


Asunto(s)
Antígeno CD11c , Células Dendríticas , Morfolinas , Fosfatidilinositol 3-Quinasas , Animales , Femenino , Humanos , Ratones , Antígeno CD11c/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Hidrazonas , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Morfolinas/farmacología , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas , Linfocitos T/inmunología , Masculino
3.
Chem Asian J ; : e202400588, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926300

RESUMEN

Photocatalytic H2 evolution by water splitting is a promising approach to address the challenges of environmental pollution and energy scarcity. Graphitic carbon nitride (g-C3N4) has emerged as a star photocatalyst because of its numerous advantages. To address the limitations of traditional g-C3N4, namely its inadequate visible light response and rapid recombination of photogenerated carriers, we employed a schiff base reaction to synthesize -C=N- doped g-C3N4. The introduction of -C=N- groups at the bridging nitrogen sites induced structural distortion in g-C3N4, facilitating n-π* electronic transitions from the lone pair electrons of nitrogen atom and extending light absorption up to 600 nm. Moreover, the presence of heterogeneous π-conjugated electron distribution effectively traps photogenerated electrons and enhances charge carrier separation. Benefiting from its expanded spectral response range, unique electronic properties, increased specific surface area, the doped g-C3N4 exhibited outstanding photocatalytic H2 evolution performance of 1050.13 µmol/g/h. The value was 5.9 times greater than the pristine g-C3N4.

4.
JCO Precis Oncol ; 8: e2300565, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38810179

RESUMEN

PURPOSE: Develop and validate gene expression-based biomarker associated with recurrent disease to facilitate risk stratification of clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: We retrospectively identified 110 patients who underwent radical nephrectomy for ccRCC (discovery cohort). Patients who recurred were matched on the basis of grade/stage to patients without recurrence. Capture whole-transcriptome sequencing was performed on RNA isolated from archival tissue using the Illumina platform. We developed a gene-expression signature to predict recurrence-free survival/disease-free survival (DFS) using a 15-fold lasso and elastic-net regularized linear Cox model. We derived the 31-gene cell cycle progression (mxCCP) score using RNA-seq data for each patient. Kaplan-Meier (KM) curves and multivariable Cox proportional hazard testing were used to validate the independent prognostic impact of the gene-expression signature on DFS, disease-specific survival (DSS), and overall survival (OS) in two validation data sets (combined n = 761). RESULTS: After quality control, the discovery cohort comprised 50 patients with recurrence and 41 patients without, with a median follow-up of 26 and 36 months, respectively. We developed a 15-gene (15G) signature, which was independently associated with worse DFS and DSS (DFS: hazard ratio [HR], 11.08 [95% CI, 4.9 to 25.1]; DSS: HR, 9.67 [95% CI, 3.4 to 27.7]) in a multivariable model adjusting for clinicopathologic parameters (including stage, size, grade, and necrosis [SSIGN] score and Memorial Sloan Kettering Cancer Center nomogram) and mxCCP score. The 15G signature was also independently associated with worse DFS and DSS in both validation data sets (Validation A [n = 382], DFS: HR, 2.6 [95% CI, 1.6 to 4.3]; DSS: HR, 3 [95% CI, 1.4 to 6.1] and Validation B (n = 379), DFS: HR, 2.1 [95% CI, 1.2 to 3.6]; OS: HR, 3 [95% CI, 1.6 to 5.7]) adjusting for clinicopathologic variables and mxCCP score. CONCLUSION: We developed and validated a novel 15G prognostic signature to improve risk stratification of patients with ccRCC. Pending further validation, this signature has the potential to facilitate optimal treatment allocation.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/mortalidad , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Biomarcadores de Tumor/genética , Transcriptoma , Recurrencia Local de Neoplasia/genética
5.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557192

RESUMEN

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Asunto(s)
Adenosina Trifosfatasas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratas , Ratones , Animales , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Línea Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores Androgénicos , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
8.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38586029

RESUMEN

Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which is exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition or the inhibition of its catalytic domain. In vivo experiments using an orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.

9.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464081

RESUMEN

Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.

10.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464258

RESUMEN

The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.

11.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328238

RESUMEN

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

12.
Horm Metab Res ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37956980

RESUMEN

The aim of this study is to report the risk factors of severe statin induced liver injury (SILI). From the database of Shandong ADR Monitoring Center and Outpatients and inpatients in our hospital, SILI cases reported from 2013 to 2021 were extracted and screened. The diagnostic criteria of SILI, the inclusion and exclusion criteria of severe and general SILI were established separately. After the SILI cases were selected and confirmed, the socio-demographic and clinical characteristics were collected. Single factor chi-square test and multi-factor unconditional logistic regression analysis were used to analyze the influencing factors of severe SILI. From 1391 reported cases, 1211 met SILI diagnostic criteria, of which 157 were severe SILI and 964 were general SILI. Univariate analysis showed that age, drug combination, statin category were the influencing factors of severe SILI (p<0.1). Multivariate logistic analysis showed that drug combination and statin category were the influencing factors of severe SILI (p<0.05). Atorvastatin caused the most serious SILI, and its risk is 1.77 times higher than rosuvastatin. The serious SILI risk of drug combination was 2.08 times higher than statin alone. The patient with these factors should be monitored intensively during clinical treatment, to ensure their medication safety.

13.
Am J Surg Pathol ; 48(2): 163-173, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994665

RESUMEN

Birt-Hogg-Dubé (BHD) syndrome is associated with an increased risk of multifocal renal tumors, including hybrid oncocytic tumor (HOT) and chromophobe renal cell carcinoma (chRCC). HOT exhibits heterogenous histologic features overlapping with chRCC and benign renal oncocytoma, posing challenges in diagnosis of HOT and renal tumor entities resembling HOT. In this study, we performed integrative analysis of bulk and single-cell RNA sequencing data from renal tumors and normal kidney tissues, and nominated candidate biomarkers of HOT, L1CAM, and LINC01187 , which are also lineage-specific markers labeling the principal cell and intercalated cell lineages of the distal nephron, respectively. Our findings indicate the principal cell lineage marker L1CAM and intercalated cell lineage marker LINC01187 to be expressed mutually exclusively in a unique checkered pattern in BHD-associated HOTs, and these 2 lineage markers collectively capture the 2 distinct tumor epithelial populations seen to co-exist morphologically in HOTs. We further confirmed that the unique checkered expression pattern of L1CAM and LINC01187 distinguished HOT from chRCC, renal oncocytoma, and other major and rare renal cell carcinoma subtypes. We also characterized the histopathologic features and immunophenotypic features of oncocytosis in the background kidney of patients with BHD, as well as the intertumor and intratumor heterogeneity seen within HOT. We suggest that L1CAM and LINC01187 can serve as stand-alone diagnostic markers or as a panel for the diagnosis of HOT. These lineage markers will inform future studies on the evolution and interaction between the 2 transcriptionally distinct tumor epithelial populations in such tumors.


Asunto(s)
Adenoma Oxifílico , Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renales , Neoplasias Renales , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Ciudades , Neoplasias Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología
14.
Acta Cir Bras ; 38: e386223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055397

RESUMEN

PURPOSE: Over-activation of nuclear factor kappa B (NF-κB) was proven to be involved in the pathogenesis of preeclampsia. However, its regulation mechanism is not clear yet. This paper explored the role of WD repeat domain 5 (WDR5) in the development of late-onset preeclampsia and its relationship with NF-κB. METHODS: WDR5 expression was detected in normal placentas and placentas from late-onset preeclampsia patients. CCK-8 and colony formation assays were conducted to appraise the proliferative ability of trophoblast. Migration and invasion were observed by wound healing and transwell assays. The interaction between WDR5 and NF-κB inhibitor I-kappa-B-alpha (IkBa) was verified by Co-immunoprecipitation analysis. Immunofluorescence was used to analyze the activation of NF-κB. Finally, we tested the role of WDR5 using the mice late-onset preeclampsia model. RESULTS: WDR5 was highly expressed in the placentas of late-onset preeclampsia patients. WDR5 overexpression suppressed cell proliferation, migration, and invasion in trophoblast. WDR5 could interact with IkBa to activate NF-κB. Knockdown of NF-κB counteracted the anti-proliferative and anti-metastatic effects of WDR5 overexpression in trophoblast. In-vivo studies suggested that targeting WDR5 combated late-onset preeclampsia development. CONCLUSIONS: Our finding provides new insights into the role of WDR5 in late-onset preeclampsia development.


Asunto(s)
FN-kappa B , Preeclampsia , Embarazo , Ratones , Femenino , Animales , Humanos , FN-kappa B/metabolismo , Preeclampsia/metabolismo , Repeticiones WD40 , Placenta , Trofoblastos/metabolismo , Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(49): e2314416120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011559

RESUMEN

Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Humanos , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I , Inmunoterapia/métodos , Lípidos , Neoplasias/genética , Neoplasias/terapia
16.
Cell Div ; 18(1): 17, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872600

RESUMEN

BACKGROUND: LncRNAs have been shown to be involved in and control the biological processes of multiple diseases, including preeclampsia (PE). The impairment of trophoblast cell proliferation is recognized as a significant anomaly contributing to the development of PE. LncRNA FEZF1-AS1 was found downregulated in placental tissues of PE patients. However, the precise regulatory mechanism of FEZF1-AS1 in placental trophoblast proliferation and apoptosis remains unclear. RESULTS: In this study, we conducted an investigation into the expression levels of FEZF1-AS1 and NOC2L in placental tissues obtained from patients diagnosed with PE. Subsequently, we employed CCK-8 and EdU assays to quantify cell proliferation, while TUNEL staining and western blot for apoptosis-related protein detection to assess apoptosis. Furthermore, the interactions between FEZF1-AS1 and ELAVL1, as well as NOC2L and ELAVL1, were confirmed through the implementation of RIP and RNA pull-down assays. We found a downregulation of lncRNA FEZF1-AS1 and NOC2L in placental tissues of PE patients. Overexpression of FEZF1-AS1 or NOC2L resulted in increased cell proliferation and inhibition of apoptosis, whereas knockdown of FEZF1-AS1 or NOC2L had the opposite effect. In addition, lncRNA FEZF1-AS1 stabilized NOC2L mRNA expression by interacting with ELAVL1. Moreover, partial reversal of the effects of FEZF1-AS1 overexpression on cell proliferation and apoptosis was observed upon suppression of ELAVL1 or NOC2L. CONCLUSIONS: PE related lncRNA FEZF1-AS1 could regulate apoptosis and proliferation of placental trophoblast cells through the ELAVL1/NOC2L axis.

18.
Proc Natl Acad Sci U S A ; 120(30): e2221809120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459541

RESUMEN

Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted. Due to continued interest in proxalutamide, which is in phase 3 trials, we examined its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxalutamide led to degradation of AR protein, which was not observed with enzalutamide. Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by multiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected against cell death in response to tumor necrosis factor alpha and interferon gamma, and overall survival of mice was increased with proxalutamide treatment prior to cytokine exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an essential transcription factor that mediates antioxidant responses, and decreased lung inflammation. These data provide compelling evidence that proxalutamide can prevent SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising clinical data may emerge from ongoing phase 3 trials.


Asunto(s)
COVID-19 , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , SARS-CoV-2/metabolismo , Andrógenos , Antagonistas de Andrógenos/uso terapéutico , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Interferón gamma/uso terapéutico
19.
J Obstet Gynaecol Res ; 49(1): 141-153, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36324256

RESUMEN

BACKGROUND: Decreased proliferation and invasion of trophoblast were proven to be involved in the pathogenesis of preeclampsia (PE). However, the regulatory network has not been clarified yet. This study aimed to explore the role of miR-101-3p in the progression of PE. METHODS: miR-101-3p expression in placentas of pregnant women with or without PE was analyzed by real-time quantitative PCR (RT-qPCR). Trophoblastic HTR-8/SVneo and HPT-8 cell lines were cultured and underwent hypoxia/reoxygenation (H/R) treatment to mimic PE in vitro. Cell proliferation and invasion were analyzed in gain-of and loss-of-function assays. Finally, we undertook in vivo studies to explore effects of miR-101-3p in the PE model. RESULTS: Compared to placentas from patients without PE, miR-101-3p expressed significantly higher in placentas from PE patients, and its level was positively correlated with the severity of patients. In vitro studies found that overexpression of miR-101-3p significantly suppressed cell proliferation and invasion, while knockdown of miR-101-3p reversed the impacts of H/R treatment. Further research showed that the expression of WD repeat domain 5 (WDR5) was significantly lower in placentas from patients with PE, and its level was negatively associated with the severity of patients. In vitro and in vivo studies confirmed that miR-101-3p promoted PE progression through the regulation of WD WDR5 expression. CONCLUSION: Increased expression of miR-101-3p in placenta contributes to the development of PE by suppressing WDR5-mediated proliferation and invasion of trophoblast.


Asunto(s)
MicroARNs , Preeclampsia , Humanos , Embarazo , Femenino , Trofoblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Placenta/metabolismo , Hipoxia/metabolismo , Proliferación Celular/genética , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular
20.
Chem Asian J ; 18(2): e202201139, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36507569

RESUMEN

Pt is usually used as cocatalyst for g-C3 N4 to produce H2 by photocatalytic splitting of water. However, the photocatalytic performance is still limited by the fast recombination of photo-generated electrons and holes, as well as the poor absorption of visible light. In this work, MoO2 /g-C3 N4 composites were prepared, in which MoO2 synergetic with Pt photo-deposited during H2 evolution reaction worked as unilateral dual cocatalyst to improve the photocatalytic activity. Within 4 hours of irradiation, the hydrogen production rate of MoO2 -Pt dual cocatalyst modified g-C3 N4 reached 3804.89 µmol/g/h, which was 120.18 times of that of pure g-C3 N4 (GCN, 31.66 µmol/g/h), 10.98 times of that of MoO2 modified g-C3 N4 (346.39 µmol/g/h), and 9.18 times of that of Pt modified g-C3 N4 (413.64 µmol/g/h). Characterization results demonstrate that the deficient MoO2 not only promoted visible light absorption of g-C3 N4 , but also worked as a "electron pool" to capture and transfer electrons to Pt.


Asunto(s)
Electrones , Hidrógeno , Luz , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...