Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(5): 512-517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38811213

RESUMEN

Cell-penetrating peptides (CPPs) serve as potent vehicles for delivering membrane-impermeable compounds, including nucleic acids, into cells. In a previous study, we reported the successful intracellular delivery of small interfering RNAs (siRNAs) with negligible cytotoxicity using a peptide containing an unnatural amino acid (dipropylglycine). In the present study, we employed the same seven peptides as the previous study to evaluate their efficacy in delivering plasmid DNA (pDNA) intracellularly. Although pDNA and siRNA are nucleic acids, they differ in size and biological function, which may influence the optimal peptide sequences for their delivery. Herein, three peptides demonstrated effective pDNA transfection abilities. Notably, only one of the three peptides previously exhibited efficient gene-silencing effect with siRNA. These findings validate our hypothesis and offer insights for the personalized design of CPPs for the delivery of pDNA and siRNA.


Asunto(s)
Péptidos de Penetración Celular , ADN , Plásmidos , ARN Interferente Pequeño , Péptidos de Penetración Celular/química , Humanos , ADN/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/administración & dosificación , Glicina/química , Transfección , Células HeLa , Supervivencia Celular/efectos de los fármacos
2.
Sci Technol Adv Mater ; 25(1): 2338785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646148

RESUMEN

Lipid nanoparticles (LNPs) coated with functional and biocompatible polymers have been widely used as carriers to deliver oligonucleotide and messenger RNA therapeutics to treat diseases. Poly(ethylene glycol) (PEG) is a representative material used for the surface coating, but the PEG surface-coated LNPs often have reduced cellular uptake efficiency and pharmacological activity. Here, we demonstrate the effect of pH-responsive ethylenediamine-based polycarboxybetaines with different molecular weights as an alternative structural component to PEG for the coating of LNPs. We found that appropriate tuning of the molecular weight around polycarboxybetaine-modified LNP, which incorporated small interfering RNA, could enhance the cellular uptake and membrane fusion potential in cancerous pH condition, thereby facilitating the gene silencing effect. This study demonstrates the importance of the design and molecular length of polymers on the LNP surface to provide effective drug delivery to cancer cells.


The study presents the unique characteristics of small interfering RNA (siRNA)-loaded lipid nanoparticles (LNPs) with different lengths of PGlu(DET-Car), revealing the length of PGlu(DET-Car) critically affects the formation of a stable LNP, the cellular uptake, membrane fusion, and gene silencing abilities.

3.
Biochem Biophys Res Commun ; 699: 149556, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277727

RESUMEN

Therapeutic devices incorporating living cells or tissues have been intensively investigated for applications in tissue engineering and regenerative medicine. Because many biological processes are governed by spatially dependent signals, programmable immobilization of materials is crucial for manipulating multiple types of cells. In this study, click chemistry substrates were introduced onto the surfaces of cells and cover glass, and the cells were fixed on the cover glass via covalent bonds for selective cell deposition. Azide group (Az)-labeled living cells were prepared by metabolic labeling with azido sugars. Following the introduction of Az, TCO (trans-cyclooctene) was metabolically labeled into the living cells by reacting with TCO-DBCO (dibenzocyclooctyne). Az and TCO in the cells were detected using DBCO-FAM (fluorescein)and tetrazine-Cy3, respectively. The mixture of Az-labeled green fluorescent protein HeLa cells and TCO-labeled red fluorescent protein HeLa cells was reacted in a culture dish in which three different cover glasses, DBCO-, tetrazine-, or methyl-coated, were added. Az- or TCO-labeled cells could be immobilized in a functional group-dependent manner. Next, tetrazine-labeled cells were incubated on TCO- or Az-labeled cell layers instead of cover glass. Functional group-dependent immobilization was also achieved in the cell layer. Introducing substrates for the click reaction could achieve cell-selective immobilization on different patterned glass surfaces, as well as cell-cell immobilization.


Asunto(s)
Química Clic , Ingeniería de Tejidos , Humanos , Células HeLa , Azidas/química
4.
J Control Release ; 360: 928-939, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37495117

RESUMEN

The success of gene therapy relies on gene nanocarriers to achieve therapeutic effects in vivo. Surface shielding of poly(ethylene glycol) (PEG), known as PEGylation, onto gene delivery carriers is a predominant strategy for extending blood circulation and improving therapeutic outcomes in vivo. Nevertheless, PEGylation frequently compromises the transfection efficiency by decreasing the interactions with the cellular membrane of the targeted cells, thereby preventing the cellular uptake and the subsequent endosomal escape. Herein, we developed a stepwise pH-responsive polyplex micelle for the plasmid DNA delivery with the surface covered by ethylenediamine-based polycarboxybetaines. This polyplex micelle switched its surface charge from neutral at pH 7.4 to positive at tumorous and endo-/lysosomal pH (i.e., pH 6.5 and 5.5, respectively), thus enhancing the cellular uptake and facilitating the endosomal escape toward efficient gene transfection. Additionally, the polyplex micelle demonstrated prolonged blood circulation as well as enhanced tumor accumulation, leading to highly effective tumor growth suppression by delivering an antiangiogenic gene. These results suggest the usefulness of a pH-responsive charge-switchable shell polymer on the surface of the polyplex micelle for the efficient nucleic acid delivery.


Asunto(s)
Micelas , Neoplasias , Humanos , ADN , Polímeros , Polietilenglicoles , Transfección , Neoplasias/tratamiento farmacológico , Concentración de Iones de Hidrógeno
5.
Biomaterials ; 293: 121987, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36584445

RESUMEN

Various cancer cells overexpress L-type amino acid transporter 1 (LAT1) to take up a large number of neutral amino acids such as phenylalanine and methionine, and LAT1 transporter should be a promising target for cancer diagnosis and therapy. However, only a few studies reported drug delivery systems targeting LAT1 probably due to limited knowledge about the interaction between LAT1 and its substrate. Here, we developed polymers having methionine (Met)- or cysteine (Cys)-like structures on their side chains to examine their affinity with LAT1. While both the Met- and Cys-modified polymers exhibited efficient cellular uptake selectively in cancer cells, the Met-modified polymers exhibited higher cellular uptake efficiency in an LAT1-selective manner than the Cys-modified polymers. In the in vivo study, the intraperitoneally injected Met-modified polymers showed appreciable tumor-selective accumulation in the peritoneal dissemination model, and importantly, Met-modified polymers conjugated with photosensitizers exhibited significant therapeutic effects upon photoirradiation with reduced photochemical damage to normal organs. Our results may provide important knowledge about the polymer-LAT1 interaction, and the Met-modified polymers should offer a new concept for designing LAT1-targeting drug delivery systems.


Asunto(s)
Aminoácidos , Neoplasias , Humanos , Neoplasias/metabolismo , Metionina/metabolismo , Racemetionina , Sistemas de Transporte de Aminoácidos , Polímeros/metabolismo , Azufre/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo
6.
Pharm Res ; 40(1): 157-165, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36307662

RESUMEN

PURPOSE: Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature. METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells. RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C. CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.


Asunto(s)
Temperatura Corporal , Polímeros , ARN Interferente Pequeño/genética , Temperatura , Silenciador del Gen
7.
Cancer Sci ; 113(12): 4339-4349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36047963

RESUMEN

Lipid nanoparticles (LNPs) have been commonly used as a vehicle for nucleic acids, such as small interfering RNA (siRNA); the surface modification of LNPs is one of the determinants of their delivery efficiency especially in systemic administration. However, the applications of siRNA-encapsulated LNPs are limited due to a lack effective systems to deliver to solid tumors. Here, we report a smart surface modification using a charge-switchable ethylenediamine-based polycarboxybetaine for enhancing tumor accumulation via interaction with anionic tumorous tissue constituents due to selective switching to cationic charge in response to cancerous acidic pH. Our polycarboxybetaine-modified LNP could enhance cellular uptake in cancerous pH, resulting in facilitated endosomal escape and gene knockdown efficiency. After systemic administration, the polycarboxybetaine-modified LNP accomplished high tumor accumulation in SKOV3-luc and CT 26 subcutaneous tumor models. The siPLK-1-encapsulated LNP thereby accomplished significant tumor growth inhibition. This study demonstrates a promising potential of the pH-responsive polycarboxybetaine as a material for modifying the surface of LNPs for efficient nucleic acid delivery.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , ARN Interferente Pequeño/genética , Lípidos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Concentración de Iones de Hidrógeno
8.
J Control Release ; 346: 392-404, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461967

RESUMEN

The Enhanced Permeability and Retention (EPR) effect is a golden strategy for the nanoparticle (NP)-based targeting of solid tumors, and the surface property of NPs might be a determinant on their targeting efficiency. Poly(ethylene glycol) (PEG) is commonly used as a shell material; however, it has been pointed out that PEG-coated NPs may exhibit accumulation near tumor vasculature rather than having homogenous intratumor distribution. The PEG shell plays a pivotal role on prolonged blood circulation of NPs but potentially impairs the intratumor retention of NPs. In this study, we report on a shell material to enhance tumor-targeted delivery of NPs by maximizing the EPR effect: polyzwitterion based on ethylenediamine-based carboxybetaine [PGlu(DET-Car)], which shows the changeable net charge responding to surrounding pH. The net charge of PGlu(DET-Car), is neutral at physiological pH 7.4, allowing it to exhibit a stealth property during the blood circulation; however, it becomes cationic for tissue-interactive performance under tumorous acidic conditions owing to the stepwise protonation behavior of ethylenediamine. Indeed, the PGlu(DET-Car)-coated NPs (i.e., gold NPs in the present study) exhibited prolonged blood circulation and remarkably enhanced tumor accumulation and retention than PEG-coated NPs, achieving 32.1% of injected dose/g of tissue, which was 4.2 times larger relative to PEG-coated NPs. Interestingly, a considerable portion of PGlu(DET-Car)-coated NPs clearly penetrated into deeper tumor sites and realized the effective accumulation in hypoxic regions, probably because the cationic net charge of PGlu(DET-Car) is augmented in more acidic hypoxic regions. This study suggests that the changeable net charge on the NP surface in response to tumorous acidic conditions is a promising strategy for tumor-targeted delivery based on the EPR effect.


Asunto(s)
Nanopartículas , Cationes , Línea Celular Tumoral , Etilenodiaminas , Nanopartículas/química , Polietilenglicoles/química
9.
ACS Appl Mater Interfaces ; 13(46): 54850-54859, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34756033

RESUMEN

The construction of enzyme delivery systems, which can control enzymatic activity at a target site, is important for efficient enzyme-prodrug therapy/diagnosis. Herein we report a facile technique to construct a systemically applicable ß-galactosidase (ß-Gal)-loaded ternary complex comprising tannic acid (TA) and phenylboronic acid-conjugated polymers through sequential self-assembly in aqueous solution. At physiological conditions, the ternary complex exhibited a hydrodynamic diameter of ∼40 nm and protected the loaded ß-Gal from unfavorable degradation by proteinase. Upon cellular internalization, the ternary complex recovered ß-Gal activity by releasing the loaded ß-Gal. The intravenously injected ternary complex thereby delivered ß-Gal to the target tumor in a subcutaneous tumor model and exerted enhanced and selective enzymatic activity at the tumor site. Sequential self-assembly with TA and phenylboronic acid-conjugated polymers may offer a novel approach for enzyme-prodrug theragnosis.


Asunto(s)
Ácidos Borónicos/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Polímeros/metabolismo , Taninos/metabolismo , beta-Galactosidasa/metabolismo , Animales , Ácidos Borónicos/química , Línea Celular Tumoral , Femenino , Hidrodinámica , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Molecular , Nanopartículas/química , Neoplasias/diagnóstico , Tamaño de la Partícula , Polímeros/síntesis química , Polímeros/química , Propiedades de Superficie , Taninos/química , beta-Galactosidasa/administración & dosificación , beta-Galactosidasa/sangre
10.
J Control Release ; 332: 184-193, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33636247

RESUMEN

In boron neutron capture therapy (BNCT), boron drugs should accumulate selectively within a tumor and be quickly cleared from blood and normal organs. However, it is usually challenging to achieve the efficient tumor accumulation and the quick clearance simultaneously. Here we report the complex composed of a fructose-modified poly(ethylene glycol)-poly(l-lysine) block copolymer and p-boronophenylalanine, termed PEG-P[Lys/Lys(fructose)]-BPA, as a boron delivery system permitting selective accumulation within the target tumor with quick clearance from normal organs as well as blood. Our PEG-P[Lys/Lys(fructose)]-BPA could be internalized into tumor cells through LAT1 amino acid transporter-mediated endocytosis and retain in the targeted cells, thereby accomplishing more efficient accumulation and retention in a subcutaneous tumor than clinically used fructose-BPA complexes. Importantly, the moderately cationic property of the polymer facilitated renal clearance and PEG-P[Lys/Lys(fructose)]-BPA exhibited high accumulation contrast between the target tumor and the blood/normal organ. Finally, upon thermal neutron irradiation, PEG-P[Lys/Lys(fructose)]-BPA significantly inhibited the tumor growth in mice. PEG-P[Lys/Lys(fructose)]-BPA may be a promising boron delivery system for BNCT.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Fructosa , Animales , Compuestos de Boro , Ratones , Fenilalanina/análogos & derivados , Polímeros
11.
J Control Release ; 329: 513-523, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-32911012

RESUMEN

The enhanced permeability and retention (EPR) effect is fundamental to tumor-targeted drug delivery using nanoparticles. However, recent studies reported heterogeneity of the EPR effect, and companion diagnostics are considered to be key to predicting and optimizing the benefits of the EPR effect. Here, as a new material to simply endow the function of companion diagnostics to nanoparticles, we designed a poly(ethylene glycol) (PEG) derivative conjugated with low molecular fluorescent dye through synthetic substrate linker that can be cleaved in response to MMP-2, which is overexpressed in tumor extracellular matrix. Upon tumor accumulation, the low molecular fluorescent dye is released from the PEG and quickly excreted to urine, thereby reporting its tumor accumulation level as a fluorescent signal in the urine. In this study, this urinary reporter was conjugated with albumin, and the functionalized albumin exhibited efficient accumulation in various tumors. Importantly, the functionalized albumin exhibited significantly higher excretion of the fluorescent dye in the urine in mice with tumors compared with those without tumors. The PEG derivatives proposed in this study may be a promising tool to predict the EPR effect in individual cancer patients.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Nanopartículas , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Permeabilidad , Polietilenglicoles
12.
ACS Appl Bio Mater ; 4(10): 7402-7407, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35006695

RESUMEN

Transporter ASCT2, which predominantly imports glutamine (Gln), is overexpressed in a variety of cancer cells, and targeting ASCT2 is expected to be a promising approach for tumor diagnosis and therapy. In this work, we designed a series of glutamine-modified poly(l-lysine) (PLys(Gln)) homopolymers and PEG-PLys(Gln) block copolymers and investigated their tumor-targeting abilities. With increasing degree of polymerization in the PLys(Gln) homopolymers, their cellular uptake was gradually enhanced through multivalent interactions with ASCT2. The performance of PEG-PLys(Gln) in blood circulation and tumor accumulation could be controlled by tuning of the molecular weight of PEG. Our results highlight the utility of molecular recognition in ASCT2/PLys(Gln) for tumor targeting through systemic administration.


Asunto(s)
Glutamina , Neoplasias , Sistema de Transporte de Aminoácidos ASC/genética , Humanos , Antígenos de Histocompatibilidad Menor/genética , Neoplasias/diagnóstico , Polímeros
13.
Cancer Sci ; 112(1): 410-421, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32770631

RESUMEN

Cancer cells have high iron requirements due to their rapid growth and proliferation. Iron depletion using iron chelators has a potential in cancer treatment. Previous studies have demonstrated that deferoxamine (DFO) specifically chelates Fe(III) and exhibited antitumor activity in clinical studies. However, its poor pharmacokinetics has limited the therapeutic potential and practical application. Although polymeric iron chelators have been developed to increase the blood retention, none of previous studies has demonstrated their potential in iron chelation cancer therapy. Here, we developed polymeric DFO by the covalent conjugation of DFO to poly(ethylene glycol)-poly(aspartic acid) (PEG-PAsp) block copolymers. The polymeric DFO exhibited iron-chelating ability comparable with free DFO, thereby arresting cell cycle and inducing apoptosis and antiproliferative activity. After intravenous administration, the polymeric DFO showed marked increase in blood retention and tumor accumulation in subcutaneous tumor models. Consequently, polymeric DFO showed significant suppression of the tumor growth compared with free DFO. This study reveals the first success of the design of polymeric DFO for enhancing iron chelation cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Deferoxamina/farmacología , Portadores de Fármacos/farmacología , Quelantes del Hierro/farmacología , Animales , Línea Celular Tumoral , Deferoxamina/química , Portadores de Fármacos/química , Quelantes del Hierro/química , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Péptidos/química , Péptidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología
14.
J Control Release ; 328: 608-616, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32971200

RESUMEN

In photodynamic therapy (PDT), the inherent physicochemical properties of a photosensitizer (PS) critically affect its biodistribution and therapeutic outcome as well as side effect. Here, we developed a PS-polymer conjugate displaying isothermal hydrophilic-to-hydrophobic phase transition in response to tumorous acidic pH. The polymer backbone was poly(N-isopropylacrylamide (NIPAAm)/2-aminoisoprpylacrylamide (AIPAAm)) (P(NIPAAm/AIPAAm)), which shows lower critical solution temperature (LCST) of 30 °C. The amine groups in its side chains were converted to hydrophilic acid-labile 2-propionic-3-methylmaleic (PMM) amides, forming poly(NIPAAm/AIPAAm-PMM). The conjugation of PMM moieties drastically increased the LCST of the polymer to 40 °C and displayed hydrophilic character to minimalize unspecific interaction of PS-P(NIPAAm/AIPAAm-PMM) in bloodstream, diminishing potential photosensitivity. The detachment of PMM at tumorous pH lowered the LCST to that of original P(NIPAAm/AIPAAm), permitting hydrophilic-to-hydrophobic transition at a physiological temperature (37 °C). This pH-responsive isothermal phase transition facilitated interaction with the cultured cancer cells, accomplishing 8.1 times-enhanced cellular uptake and strong phototoxicity in a tumorous pH-selective manner. Even in subcutaneous tumor models, our polymer conjugates exhibited efficient tumor accumulation and significantly augmented PDT effect without inducing unfavorable photochemical toxicity to the skin. This study offers a novel concept of PS delivery systems targeting tumorous pH by the use of isothermal phase transition.


Asunto(s)
Fotoquimioterapia , Polímeros , Concentración de Iones de Hidrógeno , Transición de Fase , Temperatura , Distribución Tisular
15.
Biomacromolecules ; 21(9): 3826-3835, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32786730

RESUMEN

Tannic acid (TA) can form stable complexes with proteins, attracting significant attention as protein delivery systems. However, its systemic application has been limited due to nonspecific interaction. Here, we report a simple technique to prepare systemically applicable protein delivery systems using sequential self-assembly of a protein, TA, and phenylboronic acid-conjugated PEG-poly(amino acid) block copolymers in aqueous solution. Mixing the protein and TA in aqueous solution led to covering of the protein with TA, and subsequent addition of the copolymer resulted in the formation of boronate esters between TA and copolymers, constructing the core-shell-type ternary complex. The ternary complex covered with PEG exhibited a small hydrodynamic diameter of ∼10-20 nm and prevented an unfavorable interaction with serum components, thereby accomplishing significantly prolonged blood circulation and enhanced tumor accumulation in a subcutaneous tumor model. The technique utilizing supramolecular self-assembly may serve as a novel approach for designing protein delivery systems.


Asunto(s)
Polietilenglicoles , Taninos , Ácidos Borónicos , Micelas , Polímeros
16.
Sci Adv ; 6(4): eaaz1722, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010792

RESUMEN

In the current clinical boron neutron capture therapy (BNCT), p-boronophenylalanine (BPA) has been the most powerful drug owing to its ability to accumulate selectively within cancers through cancer-related amino acid transporters including LAT1. However, the therapeutic success of BPA has been sometimes compromised by its unfavorable efflux from cytosol due to their antiport mechanism. Here, we report that poly(vinyl alcohol) (PVA) can form complexes with BPA through reversible boronate esters in aqueous solution, and the complex termed PVA-BPA can be internalized into cancer cells through LAT1-mediated endocytosis, thereby enhancing cellular uptake and slowing the untoward efflux. In in vivo study, compared with clinically used fructose-BPA complexes, PVA-BPA exhibited efficient tumor accumulation and prolonged tumor retention with quick clearance from bloodstream and normal organs. Ultimately, PVA-BPA showed critically enhanced antitumor activity in BNCT. The facile technique proposed in this study offers an approach for drug delivery focusing on drug metabolism.


Asunto(s)
Compuestos de Boro/farmacología , Terapia por Captura de Neutrón de Boro , Metabolismo Energético/efectos de los fármacos , Fenilalanina/análogos & derivados , Alcohol Polivinílico/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Compuestos de Boro/química , Compuestos de Boro/farmacocinética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Espectrometría de Masas , Ratones , Neoplasias/terapia , Fenilalanina/química , Fenilalanina/farmacocinética , Fenilalanina/farmacología , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacocinética , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Transducción de Señal/efectos de los fármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Biomaterials ; 235: 119804, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31991339

RESUMEN

Gemcitabine (GEM) is a powerful anticancer drug for various cancers. However, the anticancer efficacy and the side effects should be addressed for effective therapeutics. To this end, we created a GEM-conjugated polymer (P-GEM) based on cyclic acetal linkage as a delivery carrier of GEM. The obtained P-GEM stably conjugated GEM at physiological pH (i.e., bloodstream), but released GEM in response to acidic environments such as endosome/lysosome. After systemic administration of P-GEM for mice bearing subcutaneous tumors, it achieved prolonged blood circulation and enhanced tumor accumulation relative to free GEM system. In addition, the polymer-drug conjugate structure of P-GEM realized effective distribution in the tumor tissues toward the induction of apoptosis in most areas of the tumor sites. Of note, the molecular design of P-GEM achieved minimal accumulation in normal tissues, resulting in negligible GEM-derived adverse effects (e.g., gastrointestinal toxicity and hematotoxicity). Ultimately, even four times smaller dose of P-GEM on a GEM basis realized comparable/higher tumor growth suppression effect for two distinct pancreatic tumor models, compared to free GEM system. The obtained results suggest the huge potential of the present design of GEM-conjugated polymer for anticancer therapeutics.


Asunto(s)
Acetales , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Ratones , Polímeros , Gemcitabina
18.
Biomacromolecules ; 20(6): 2305-2314, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31091092

RESUMEN

Selective release of small interfering RNA (siRNA) payloads in response to intracellular substances is a prerequisite for the smart design of siRNA carriers. In this context, we developed a molecular program that allows reactivity with pyruvate for siRNA release in the cell on the basis of polyionic-complex- (PIC-) based siRNA carriers. Hydrazide can react with the α-keto acid structure of anionic pyruvate to form α-oxohydrazone, resulting in the reduction of the cationic net charge of the cationic polymer bearing a hydrazide moiety, which in turn leads to an inefficient electrostatic interaction with anionic siRNA and the consequent destabilization of the PIC (i.e., PGlu [DET/hydrazide]) in pyruvate-enriched environments, such as the cytoplasm, thus achieving effective siRNA release from the PIC and its associated gene-silencing activity. The present study provides the rationale for an α-oxohydrazone-formation-based smart design of pyruvate-responsive materials in the cell.


Asunto(s)
Portadores de Fármacos , Hidrazonas/metabolismo , Ácido Pirúvico/metabolismo , ARN Interferente Pequeño , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/farmacología
19.
Nat Commun ; 10(1): 1894, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019193

RESUMEN

Stabilisation of fragile oligonucleotides, typically small interfering RNA (siRNA), is one of the most critical issues for oligonucleotide therapeutics. Many previous studies encapsulated oligonucleotides into ~100-nm nanoparticles. However, such nanoparticles inevitably accumulate in liver and spleen. Further, some intractable cancers, e.g., tumours in pancreas and brain, have inherent barrier characteristics preventing the penetration of such nanoparticles into tumour microenvironments. Herein, we report an alternative approach to cancer-targeted oligonucleotide delivery using a Y-shaped block catiomer (YBC) with precisely regulated chain length. Notably, the number of positive charges in YBC is adjusted to match that of negative charges in each oligonucleotide strand (i.e., 20). The YBC rendezvouses with a single oligonucleotide in the bloodstream to generate a dynamic ion-pair, termed unit polyion complex (uPIC). Owing to both significant longevity in the bloodstream and appreciably small size (~18 nm), the uPIC efficiently delivers oligonucleotides into pancreatic tumour and brain tumour models, exerting significant antitumour activity.


Asunto(s)
Antineoplásicos/metabolismo , Neoplasias Encefálicas/terapia , Regulación Neoplásica de la Expresión Génica , Nanoestructuras/química , Oligonucleótidos/genética , Neoplasias Pancreáticas/terapia , ARN Interferente Pequeño/genética , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Carbocianinas/química , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacocinética , Colorantes Fluorescentes/química , Humanos , Inyecciones Intravenosas , Masculino , Ratones , Nanoestructuras/administración & dosificación , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , Oligonucleótidos/farmacocinética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Polietilenglicoles/química , Polilisina/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/síntesis química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacocinética , Electricidad Estática , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
20.
Oncogene ; 38(2): 244-260, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30089817

RESUMEN

Previous studies highlighted that aminopeptidase N (APN)/CD13 acts as a scavenger in the survival of hepatocellular carcinoma (HCC) stem cells by reducing reactive oxygen species (ROS) levels. Hence, it has been proposed that APN/CD13 inhibition can increase cellular ROS levels and sensitize cells to chemotherapeutic agents. Although ubenimex, also known as bestatin, competitively inhibits proteases such as APN/CD13 on the cellular membrane and it is clinically used for patients with acute myeloid leukemia and lymphedema, research has demonstrated that higher concentrations of the agent induce the death of APN/CD13+ HCC stem cells. In this study, we developed a poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate (PEG-b-PLys(Ube)) to increase the efficacy of reagents in APN/CD13+ cancer stem cells. Exposure to PEG-b-PLys(Ube) increased the intracellular ROS concentration by inhibiting APN enzyme activity, permitting the induction of apoptosis and attenuation of HCC cell proliferation. In addition, PEG-b-PLys(Ube) exhibited a relatively stronger antitumor effect in mice than PEG-b-PLys alone or phosphate-buffered saline. Moreover, an isobologram analysis revealed that combinations of fluorouracil, cisplatin, or doxorubicin with PEG-b-PLys(Ube) exhibited synergistic effects. This study demonstrated that PEG-b-PLys(Ube) does not impair the properties of ubenimex and exerts a potent antitumor effect.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antígenos CD13/antagonistas & inhibidores , Carcinoma Hepatocelular/patología , Leucina/análogos & derivados , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/efectos de los fármacos , Animales , Línea Celular Tumoral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Humanos , Leucina/farmacología , Ratones , Células Madre Neoplásicas/patología , Polietilenglicoles , Polilisina , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...