Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852753

RESUMEN

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/farmacología , Oxidopamina/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas , Pirimidinas
2.
Nature ; 630(8015): 141-148, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778097

RESUMEN

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Asunto(s)
Fentanilo , Receptores Opioides mu , Refuerzo en Psicología , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Fentanilo/farmacología , Ratones Endogámicos C57BL , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/patología , Optogenética , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37858736

RESUMEN

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Asunto(s)
Dopamina , Síndrome de Wolfram , Animales , Femenino , Masculino , Reacción de Prevención , Neuronas/fisiología , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
4.
Proc Biol Sci ; 290(2006): 20231224, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37670585

RESUMEN

Sexually dimorphic behaviours, such as parental care, have long been thought to be mainly driven by gonadal hormones. In the past two decades, a few studies have challenged this view, highlighting the direct influence of the sex chromosome complement (XX versus XY or ZZ versus ZW). The African pygmy mouse, Mus minutoides, is a wild mouse species with naturally occurring XY sex reversal induced by a third, feminizing X* chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that sex reversal in X*Y females shapes a divergent maternal care strategy (maternal aggression, pup retrieval and nesting behaviours) from both XX and XX* females. Although neuroanatomical investigations were inconclusive, we show that the dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is worth investigating further as it may support differences in pup retrieval behaviour between females. Combining behaviours and neurobiology in a rodent subject to natural selection, we evaluate potential candidates for the neural basis of maternal behaviours and strengthen the underestimated role of the sex chromosomes in shaping sex differences in brain and behaviours. All things considered, we further highlight the emergence of a third sexual phenotype, challenging the binary view of phenotypic sexes.


Asunto(s)
Conducta Materna , Ratones , Caracteres Sexuales , Sexo , Animales , Femenino , Masculino , Agresión , Encéfalo
5.
Biol Psychiatry ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579933

RESUMEN

BACKGROUND: Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS: Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

6.
Curr Neuropharmacol ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475558

RESUMEN

The external globus pallidus (GPe) is part of the basal ganglia circuit and plays a key role in controlling the actions. Although, many evidence indicate that dopamine through its activation of D2 receptors (D2Rs) modulates the GPe neuronal activity, the precise spatiomolecular characterization of cell populations expressing D2Rs in the mouse GPe is still lacking. By combining single molecule in situ hybridization, cell type-specific imaging analyses, and electrophysiology slice recordings, we found that GPe D2R cells are neurons preferentially localized in the caudal portion of GPe. These neu- rons comprising pallido-striatal, pallido-nigral, and pallido-cortical neurons segregate into two distinct populations displaying molecular and electrophysiological features of GPe GABAergic PV/NKX2.1 and cholinergic neurons respectively. By clarifying the spatial molecular identity of GPe D2R neurons in the mouse, this work provides the basis for future studies aiming at disentangling the action of do- pamine within the GPe.

7.
Front Cell Neurosci ; 17: 1146647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323585

RESUMEN

Introduction: Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes. Methods: We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes. Results: Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS. Discussion: Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.

8.
Open Biol ; 13(6): 220353, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311538

RESUMEN

Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.


Asunto(s)
Neuropéptidos , Hormonas Peptídicas , Animales , Ratones , Neuronas , Integrasas/genética , Neuropéptidos/genética , Modelos Animales de Enfermedad
9.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945487

RESUMEN

BACKGROUND: Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS: Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

10.
Neuroscience ; 510: 9-20, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502959

RESUMEN

Psychostimulant drugs, such as cocaine, d-amphetamine and methylphenidate, alter a wide range of behaviors including locomotor activity and somatosensory perception. These altered behaviors are accompanied by the activation of specific neuronal populations within reward-, emotion- and locomotion-related circuits. However, whether such regulation occurs at the level of the spinal cord, a key node for neural circuits integrating and coordinating sensory and motor functions has never been addressed. By evaluating the temporal and spatial expression pattern of the phosphorylated form of the immediate early gene cFos at Ser32 (pS32-cFos), used as a proxy of neuronal activation, we demonstrate that, in adult male mice, d-amphetamine increases pS32-cFos expression in both inhibitory and excitatory neurons in dorsal and ventral horns at the lumbar spinal cord level. Interestingly, a fraction of neurons activated by a first exposure to d-amphetamine can be re-activated following d-amphetamine re-exposure. Similar expression patterns were observed in response to cocaine and methylphenidate, but not following morphine and dozilcipine administration. Finally, the blockade of dopamine reuptake was sufficient to recapitulate the increase in pS32-cFos expression induced by psychostimulant drugs. Our work provides evidence that cFos expression can be activated in lumbar spinal cord in response to acute psychostimulants administration.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Cocaína , Metilfenidato , Masculino , Ratones , Animales , Anfetamina/farmacología , Preparaciones Farmacéuticas , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Metilfenidato/farmacología , Médula Espinal , Dextroanfetamina
11.
Neurobiol Dis ; 176: 105949, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496200

RESUMEN

The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.


Asunto(s)
Neuronas , Serotonina , Ratones , Animales , Serotonina/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos
12.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232936

RESUMEN

Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug's class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum.


Asunto(s)
Antipsicóticos , Haloperidol , Adenosina/metabolismo , Animales , Antipsicóticos/metabolismo , Antipsicóticos/farmacología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Genes Inmediatos-Precoces , Glutamatos/metabolismo , Haloperidol/farmacología , Ratones , Ratones Transgénicos , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
Front Synaptic Neurosci ; 14: 932503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812795

RESUMEN

[This corrects the article DOI: 10.3389/fnsyn.2022.875904.].

14.
Nat Metab ; 4(7): 901-917, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879461

RESUMEN

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Asunto(s)
Lactancia Materna , Obesidad , Animales , Femenino , Factores de Crecimiento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Ratas
15.
Nat Neurosci ; 25(7): 900-911, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35710984

RESUMEN

The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.


Asunto(s)
Células de Purkinje , Receptores de Dopamina D2 , Animales , Cerebelo , Masculino , Ratones , Ratones Endogámicos C57BL , Células de Purkinje/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Conducta Social
16.
Neuropsychopharmacology ; 47(7): 1304-1314, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35449450

RESUMEN

Psychedelic-assisted psychotherapy gained considerable interest as a novel treatment strategy for fear-related mental disorders but the underlying mechanism remains poorly understood. The serotonin 2A (5-HT2A) receptor is a key target underlying the effects of psychedelics on emotional arousal but its role in fear processing remains controversial. Using the psychedelic 5-HT2A/5-HT2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and 5-HT2A receptor knockout (KO) mice we investigated the effect of 5-HT2A receptor activation on emotional processing. We show that DOI administration did not impair performance in a spontaneous alternation task but reduced anxiety-like avoidance behavior in the elevated plus maze and elevated zero maze tasks. Moreover, we found that DOI did not block memory recall but diminished fear expression in a passive avoidance task. Likewise, DOI administration reduced fear expression in an auditory fear conditioning paradigm, while it did not affect retention of fear extinction when administered prior to extinction learning. The effect of DOI on fear expression was abolished in 5-HT2A receptor KO mice. Administration of DOI induced a significant increase of c-Fos expression in specific amygdalar nuclei. Moreover, local infusion of the 5-HT2A receptor antagonist M100907 into the amygdala reversed the effect of systemic administration of DOI on fear expression while local administration of DOI into the amygdala was sufficient to suppress fear expression. Our data demonstrate that activation of 5-HT2A receptors in the amygdala suppresses fear expression but provide no evidence for an effect on retention of fear extinction.


Asunto(s)
Miedo , Alucinógenos , Anfetaminas/farmacología , Animales , Ansiedad/tratamiento farmacológico , Extinción Psicológica , Miedo/fisiología , Alucinógenos/farmacología , Humanos , Ratones , Receptor de Serotonina 5-HT2A , Receptor de Serotonina 5-HT2C , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
17.
Front Synaptic Neurosci ; 14: 875904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368246
18.
Nat Metab ; 4(4): 424-434, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379970

RESUMEN

Preparation for motherhood requires a myriad of physiological and behavioural adjustments throughout gestation to provide an adequate environment for proper embryonic development1. Cravings for highly palatable foods are highly prevalent during pregnancy2 and contribute to the maintenance and development of gestational overweight or obesity3. However, the neurobiology underlying the distinct ingestive behaviours that result from craving specific foods remain unknown. Here we show that mice, similarly to humans, experience gestational food craving-like episodes. These episodes are associated with a brain connectivity reorganization that affects key components of the dopaminergic mesolimbic circuitry, which drives motivated appetitive behaviours and facilitates the perception of rewarding stimuli. Pregnancy engages a dynamic modulation of dopaminergic signalling through neurons expressing dopamine D2 receptors in the nucleus accumbens, which directly modulate food craving-like events. Importantly, persistent maternal food craving-like behaviour has long-lasting effects on the offspring, particularly in males, leading to glucose intolerance, increased body weight and increased susceptibility to develop eating disorders and anxiety-like behaviours during adulthood. Our results reveal the cognitively motivated nature of pregnancy food cravings and advocates for moderating emotional eating during gestation to prevent deterioration of the offspring's neuropsychological and metabolic health.


Asunto(s)
Ansia , Ingestión de Alimentos , Animales , Ansia/fisiología , Dopamina/metabolismo , Femenino , Preferencias Alimentarias/psicología , Masculino , Ratones , Obesidad/metabolismo , Embarazo , Aumento de Peso
19.
Mol Psychiatry ; 27(4): 2068-2079, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177825

RESUMEN

Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.


Asunto(s)
Dinoprostona , Misoprostol , Animales , Cuerpo Estriado/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Exones , Expresión Génica , Ratones , Misoprostol/metabolismo , Misoprostol/farmacología , ARN Mensajero/metabolismo , Receptores de Dopamina D1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...