Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38634148

RESUMEN

The current study investigated the structure and function of the olfactory system of the Lusitanian toadfish, Halobatrachus didactylus, using histology and electrophysiology (electro-olfactogram [EOG]), respectively. The olfactory system consists of a digitated anterior peduncle, of unknown function, containing the inhalant nostril. This then leads to a U-shaped olfactory chamber with the olfactory epithelium-identified by Gαolf-immunoreactivity-on the ventral surface. A large lacrimal sac is connected to this tube and is likely involved in generating water movement through the olfactory chamber (this species is largely sedentary). The exhalent nostril lies by the eye and is preceded by a bicuspid valve to ensure one-way flow of water. As do other teleosts, H. didactylus had olfactory sensitivity to amino acids and bile acids. Large-amplitude EOG responses were evoked by fluid from the anterior and posterior testicular accessory glands, and bile and intestinal fluids. Anterior gland and intestinal fluids from reproductive males were significantly more potent than those from non-reproductive males. Male urine and skin mucus proved to be the least potent body fluids tested. These results suggest that chemical communication-as well as acoustic communication-may be important in the reproduction of this species and that this may be mediated by the accessory glands and intestinal fluid.

2.
J Exp Biol ; 227(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197261

RESUMEN

The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.


Asunto(s)
Lubina , Animales , Lubina/fisiología , Salinidad , Calcio/metabolismo , Agua de Mar/química , Agua/metabolismo , Sodio/metabolismo , Alanina/metabolismo , Branquias/metabolismo
3.
Biol Open ; 11(3)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35199828

RESUMEN

A possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) to 4 weeks' exposure to ocean acidification (OA). Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the 4 weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after 4 weeks' exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after 4 weeks' exposure, except for [Cl-], which remained elevated. This suggests that, in general, there is an early physiological response to OA and by 4 weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity.


Asunto(s)
Dorada , Animales , Concentración de Iones de Hidrógeno , Plasticidad Neuronal , Océanos y Mares , Agua de Mar
4.
J Exp Biol ; 225(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019993

RESUMEN

Exposure to high PCO2/low pH seawater induces behavioural alterations in fish; a possible explanation for this is a reversal of Cl-/HCO3- currents through GABAA receptors (the GABAA receptor theory). However, the main evidence for this is that gabazine, a GABAA receptor antagonist, reverses these effects when applied to the water, assuming that exposure to systems other than the CNS would be without effect. Here, we show the expression of both metabotropic and ionotropic GABA receptors, and the presence of GABAA receptor protein, in the olfactory epithelium of gilthead seabream. Furthermore, exposure of the olfactory epithelium to muscimol (a specific GABAA receptor agonist) increases or decreases the apparent olfactory sensitivity to some odorants. Thus, although the exact function of GABAA receptors in the olfactory epithelium is not yet clear, this may complicate the interpretation of studies wherein water-borne gabazine is used to reverse the effects of high CO2 levels on olfactory-driven behaviour in fish.


Asunto(s)
Dorada , Animales , Mucosa Olfatoria , Receptores de GABA , Receptores de GABA-A/fisiología , Agua de Mar
5.
J Exp Biol ; 224(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34310682

RESUMEN

In the past decade, many studies have investigated the effects of low pH/high CO2 as a proxy for ocean acidification on olfactory-mediated behaviours of marine organisms. The effects of ocean acidification on the behaviour of fish vary from very large to none at all, and most of the maladaptive behaviours observed have been attributed to changes in acid-base regulation, leading to changes in ion distribution over neural membranes, and consequently affecting the functioning of gamma-aminobutyric acid-mediated (GABAergic) neurotransmission. Here, we highlight a possible additional mechanism by which ocean acidification might directly affect olfaction in marine fish and invertebrates. We propose that a decrease in pH can directly affect the protonation, and thereby, 3D conformation and charge distribution of odorants and/or their receptors in the olfactory organs of aquatic animals. This can sometimes enhance signalling, but most of the time the affinity of odorants for their receptors is reduced in high CO2/low pH; therefore, the activity of olfactory receptor neurons decreases as measured using electrophysiology. The reduced signal reception would translate into reduced activation of the olfactory bulb neurons, which are responsible for processing olfactory information in the brain. Over longer exposures of days to weeks, changes in gene expression in the olfactory receptors and olfactory bulb neurons cause these neurons to become less active, exacerbating the problem. A change in olfactory system functioning leads to inappropriate behavioural responses to odorants. We discuss gaps in the literature and suggest some changes to experimental design in order to improve our understanding of the underlying mechanisms and their effects on the associated behaviours to resolve some current controversy in the field regarding the extent of the effects of ocean acidification on marine fish.


Asunto(s)
Organismos Acuáticos , Olfato , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
6.
J Exp Biol ; 224(Pt 6)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658240

RESUMEN

Ocean acidification may alter olfactory-driven behaviour in fish by direct effects on the peripheral olfactory system; olfactory sensitivity is reduced in CO2-acidified seawater. The current study tested whether this is due to elevated PCO2  or the consequent reduction in seawater pH and, if the former, the possible involvement of carbonic anhydrase, the enzyme responsible for the hydration of CO2 and production of carbonic acid. Olfactory sensitivity to amino acids was assessed by extracellular multi-unit recording from the olfactory nerve of the gilthead seabream (Sparus aurata L.) in normal seawater (pH ∼8.2), and after acute exposure to acidified seawater (pH ∼7.7) but normal PCO2  (∼340 µatm) or to high PCO2  seawater (∼1400 µatm) at normal pH (∼8.2). Reduced pH in the absence of elevated PCO2  caused a reduction in olfactory sensitivity to l-serine, l-leucine, l-arginine and l-glutamine, but not l-glutamic acid. Increased PCO2  in the absence of changes in pH caused reduced olfactory sensitivity to l-serine, l-leucine and l-arginine, including increases in their threshold of detection, but had no effect on sensitivity to l-glutamine and l-glutamic acid. Inclusion of 1 mmol l-1 acetazolamide (a membrane-permeant inhibitor of carbonic anhydrase) in the seawater reversed the inhibition of olfactory sensitivity to l-serine caused by high PCO2 Ocean acidification may reduce olfactory sensitivity by reductions in seawater pH and intracellular pH (of olfactory receptor neurones); the former by reducing odorant-receptor affinity, and the latter by reducing the efficiency of olfactory transduction. The physiological role of carbonic anhydrase in the olfactory receptor neurones remains to be explored.


Asunto(s)
Anhidrasas Carbónicas , Acetazolamida/farmacología , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Agua de Mar
7.
J Vis Exp ; (164)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33104073

RESUMEN

Recent studies have shown that ocean acidification affects olfactory-driven behavior in fish. This may be due in part to a reduction in olfactory sensitivity in high PCO2/low pH water. To assess the effects of ocean acidification, or olfactory sensitivity in marine fish in general, we propose that extracellular multi-unit recording from the olfactory nerve is the method of choice. Although invasive, it is sensitive, robust, reproducible and independent of external salinity (unlike the electro-olfactogram [EOG], for example). Furthermore, it records a primary sensory input into the CNS, prior to any central processing. We show that this method can show a reduction in olfactory sensitivity that is both temporary and odorant-dependent, using a range of amino acids to construct concentration-response curves and calculate the thresholds of detection.


Asunto(s)
Espacio Extracelular/fisiología , Peces/fisiología , Nervio Olfatorio/fisiología , Animales , Dióxido de Carbono/farmacología , Fenómenos Electrofisiológicos , Glutamina/farmacología , Concentración de Iones de Hidrógeno , Leucina/farmacología , Agua de Mar , Olfato/fisiología , Programas Informáticos
8.
Front Physiol ; 10: 731, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333474

RESUMEN

The effects of ocean acidification on fish are only partially understood. Studies on olfaction are mostly limited to behavioral alterations of coral reef fish; studies on temperate species and/or with economic importance are scarce. The current study evaluated the effects of short- and medium-term exposure to ocean acidification on the olfactory system of gilthead seabream (Sparus aurata), and attempted to explain observed differences in sensitivity by changes in the protonation state of amino acid odorants. Short-term exposure to elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high PCO2 levels in the medium term; after 4 weeks exposure to high PCO2, the olfactory sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in high PCO2 water could be partly attributed to changes in the protonation state of the odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes changes in the charge distribution of odorant molecules, an essential component for ligand-receptor interaction. However, there are other mechanisms involved. At a histological level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. Therefore, the current study provides evidence for a direct, medium term, global effect of ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, and suggests a partial explanatory mechanism.

9.
J Exp Biol ; 212(Pt 16): 2532-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19648397

RESUMEN

The Senegalese sole is a marine flatfish, which often penetrates into estuarine waters to feed. It cannot, however, survive in full freshwater. The current study investigated the effect of adaptation to low salinity (10 per thousand) on olfactory responses to changes in environmental [Ca(2+)] and [Na(+)] and amino acids by the electro-encephalogram (EEG) recorded from the olfactory bulb. The sole showed olfactory responses to increases in environmental [Na(+)] and decreases in environmental [Ca(2+)]; sensitivity to Na(+) was greater at 10 per thousand whereas sensitivity to Ca(2+) was greater at 35 per thousand. Decreased environmental [Na(+)] increased sensitivity to changes in [Ca(2+)] whereas increased environmental [Ca(2+)] decreased bulbar responses to changes in [Na(+)]. Sensitivity to amino acids was unaffected by external salinity. However, the absence of external Na(+) strongly decreased bulbar responses to amino acids in fish adapted to 35 per thousand seawater but not in those at 10 per thousand. The absence of external Ca(2+) had no such effect at either salinity. This suggests that odorant-receptor binding and/or olfactory transduction is reliant on external Na(+) (but not Ca(2+)) at higher salinities but the olfactory system is able to adapt to lower environmental [Na(+)]. Taken together, these results suggest that reductions of external salinity modulate olfactory sensitivity to environmental Ca(2+) and Na(+) but not amino acids. However, at low salinities, olfactory sensitivity to amino acids is maintained by decreasing reliance on external Na(+).


Asunto(s)
Aminoácidos , Calcio , Peces Planos/fisiología , Salinidad , Olfato/fisiología , Sodio , Aclimatación/fisiología , Animales , Electroencefalografía , Ambiente , Carpa Dorada/fisiología , Bulbo Olfatorio/fisiología , Portugal , Salmón/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-19415298

RESUMEN

Olfactory sensitivity to bile salts is wide-spread in teleosts; however, which bile salts are released in sufficient quantities to be detected is unclear. The current study identified bile salts in the intestinal and bile fluids of Solea senegalensis by mass spectrometry-liquid chromatography and assessed their olfactory potency by the electro-olfactogram. The main bile salts identified in the bile were taurocholic acid (342 mM) and taurolithocholic acid (271 mM) plus a third, unidentified, bile salt of 532.3 Da. These three were also present in the intestinal fluid (taurocholic acid, 4.13 mM; taurolithocholic acid, 0.4 mM). In sole-conditioned water, only taurocholic acid (0.31 microM) was released in sufficient quantities to be measured (release rate: 24 nmol kg(-1) min(-1)). Sole had high olfactory sensitivity to taurocholic acid but not to taurolithocholic acid. Furthermore, olfactory sensitivity was higher in the upper (right) olfactory epithelium than the lower (left). These two bile acids contribute about 40% of the olfactory potency of intestinal fluid and account for the difference in potency at the two epithelia. Taurocholic acid (but not taurolithocholic acid), and possibly other types of bile acid not tested, could be used as chemical signals and the upper olfactory epithelium is specialised for their detection.


Asunto(s)
Ácidos y Sales Biliares/análisis , Bilis/química , Peces Planos/fisiología , Contenido Digestivo/química , Percepción Olfatoria/fisiología , Comunicación Animal , Animales , Cromatografía Líquida de Alta Presión , Heces/química , Peces Planos/anatomía & histología , Vesícula Biliar/química , Intestinos/química , Mucosa Olfatoria/fisiología , Receptores Odorantes/fisiología , Agua de Mar/análisis , Umbral Sensorial , Ácido Taurocólico/análisis , Ácido Taurolitocólico/análisis
11.
Neurochem Int ; 52(6): 1226-33, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18295934

RESUMEN

Amyloid-beta protein (A beta) and the scrapie isoform of prion protein (PrPSs) have a central role in the pathogenesis of Alzheimer's disease (AD) and prion-related encephalopathies (PRE), respectively. In both disorders, the deposition of these misfolded proteins is accompanied by apoptotic neuronal loss. However, the pathogenesis and molecular basis of A beta- and PrPSc-neurotoxic effects are not completely understood. The Ca2+/calmodulin-dependent phosphatase calcineurin (CaN), through the dephosphorylation of the proapoptotic protein BAD, may be the link between Ca2+homeostasis deregulation and apoptotic neuronal death. In this study we used primary cultures of rat brain cortical neurons in order to investigate whether A beta and PrP affect CaN activity. We observed that synthetic peptides of A beta (A beta 25-35 and A beta 1-40) and PrP (PrP106-126) increased CaN activity, but did not affect the levels of this protein phosphatase. Moreover, we found that these peptides reduced the levels of BAD phosphorylated at serine residue 112, and this effect was prevented by the CaN inhibitor FK506. Since dephosphorylated BAD translocates to mitochondria, where it triggers cytochrome c release, we determined the levels of BAD in mitochondrial and cytosolic fractions. The data obtained showed that A beta- and PrP-treated neurons had higher levels of BAD in mitochondria than control neurons. This increase in mitochondrial BAD levels was matched by a decrease in cytochrome c. FK506 prevented the alterations of mitochondrial BAD and cytochrome c levels induced by A beta and PrP peptides. Taken together the data suggest that A beta and PrP increased CaN activity, inducing BAD dephosphorylation and translocation to mitochondria and, subsequently, cytochrome c release that may trigger an apoptotic cascade. Therefore, therapeutic strategies targeting CaN might be valuable for these neurodegenerative disorders.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Calcineurina/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas PrPSc/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Calcineurina/efectos de los fármacos , Células Cultivadas , Citocromos c/efectos de los fármacos , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Péptidos/metabolismo , Péptidos/toxicidad , Proteínas PrPSc/toxicidad , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Proteína Letal Asociada a bcl/efectos de los fármacos , Proteína Letal Asociada a bcl/metabolismo
12.
Gen Comp Endocrinol ; 153(1-3): 418-25, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17400218

RESUMEN

The two olfactory epithelia of members of the family Soleidae sample two distinct water sources; the upper (right) side is in contact with the open water column whilst the lower (left) side is in contact with interstitial water. To evaluate whether there are differences in the sensitivities, and therefore functional roles, of the two epithelia the olfactory activity of conspecific-derived odorants was assessed in both using the electro-olfactogram (EOG). The upper nostril was significantly more sensitive to conspecific bile fluid, intestinal fluid and mucus than the lower nostril. Crude fractionation of these samples (solid-phase extraction with C18 and C2/ENV+ cartridges) revealed that olfactory activity in each body fluid was likely due to a mixture of compounds. In each case, the upper olfactory epithelium was significantly more sensitive than the lower. Similarly, olfactory sensitivity to a range of C(24) and C(27) bile acids was greater in the upper epithelium. These results suggest that intra-specific chemical communication is mediated mainly, if not entirely, by the upper olfactory epithelium. The odorants involved, and their functional roles, remain to be established.


Asunto(s)
Peces Planos/metabolismo , Peces Planos/fisiología , Mucosa Olfatoria/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/fisiología , Olfato/fisiología , Animales , Bilis/fisiología , Ácidos y Sales Biliares/farmacología , Líquidos Corporales/fisiología , Femenino , Mucosa Intestinal/metabolismo , Masculino , Moco/fisiología , Especificidad por Sustrato
13.
Physiol Biochem Zool ; 78(5): 756-65, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16059846

RESUMEN

The two olfactory epithelia of flatfish of the family Soleidae are essentially in contact with two distinct environments; the upper (right) side samples open water while the lower (left) side samples interstitial water. This study assessed whether there are differences in the responsiveness of the two epithelia by use of the electro-olfactogram in the Senegalese sole (Solea senegalensis). The upper epithelium was significantly more responsive to the basic amino acids (L-lysine and L-arginine), glycine, and L-threonine than the lower epithelium. The lower epithelium was significantly more responsive to aromatic amino acids (L-tryptophan, L-tyrosine, L-DOPA, and L-phenylalanine), L-leucine, and L-asparagine than the upper. Both epithelia had similar responsiveness to the sulphur-containing amino acids (L-cysteine and L-methionine), L-alanine, L-serine, and L-glutamine. Neither side was responsive to the acidic amino acids (L-aspartate and L-glutamate) or the D-isomers of any amino acid tested. The upper olfactory organ was much more responsive to conspecific-derived stimuli (bile and intestinal fluid) than the lower organ. We suggest that these differences in responsiveness may be related to different functional roles of the upper and lower epithelia in feeding and chemical communication.


Asunto(s)
Aminoácidos/farmacología , Peces Planos/fisiología , Mucosa Olfatoria/efectos de los fármacos , Olfato/fisiología , Aminoácidos/química , Animales , Líquidos Corporales/química , Electrofisiología , Peces Planos/anatomía & histología , Mucosa Olfatoria/anatomía & histología , Mucosa Olfatoria/fisiología , Olfato/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...