Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Funct Mater ; 32(38)2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36824209

RESUMEN

Focused-ion-beam machining is a powerful process to fabricate complex nanostructures, often through a sacrificial mask that enables milling beyond the resolution limit of the ion beam. However, current understanding of this super-resolution effect is empirical in the spatial domain and nonexistent in the temporal domain. This article reports the primary study of this fundamental tradespace of resolution and throughput. Chromia functions well as a masking material due to its smooth, uniform, and amorphous structure. An efficient method of in-line metrology enables characterization of ion-beam focus by scanning electron microscopy. Fabrication and characterization of complex test structures through chromia and into silica probe the response of the bilayer to a focused beam of gallium cations, demonstrating super-resolution factors of up to 6 ± 2 and improvements to volume throughput of at least factors of 42 ± 2, with uncertainties denoting 95% coverage intervals. Tractable theory models the essential aspects of the super-resolution effect for various nanostructures. Application of the new tradespace increases the volume throughput of machining Fresnel lenses by a factor of 75, enabling the introduction of projection standards for optical microscopy. These results enable paradigm shifts of sacrificial masking from empirical to engineering design and from prototyping to manufacturing.

2.
ACS Appl Mater Interfaces ; 12(50): 56650-56657, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33327058

RESUMEN

Electrical double layers play a key role in a variety of electrochemical systems. The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them suitable for probing ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent electrode in a two-electrode electrochemical system, we show that the secondary electron yield of the graphene-liquid interface depends on the ionic strength and concentration of the electrolyte and the applied bias at the remote counter electrode. These observations have been related to polarization-induced changes in the potential distribution within the electrical double layer and demonstrate the feasibility of using scanning electron microscopy to examine and map electrified liquid-solid interfaces.

3.
ACS Omega ; 5(8): 4139-4147, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32149243

RESUMEN

We report new calculations, which include the influence of the band gap and exciton states, of the electron inelastic mean free path (IMFP) for liquid water, LiF, CaF2, and Al2O3 from the band gap to 433 keV. Among compounds, liquid water is the most studied due to its role in radiobiological research, whereas LiF and CaF2 are the most widely used thermoluminescent dosimeters in environmental monitoring and medical and space dosimetry. Due to its sensitivity, the optically stimulated luminescent dosimeter, Al2O3, has recently begun to be used for personnel monitoring. Previous treatments have modified the integration domain to consider the indistinguishability between the incident electron and the ejected one or the bandgap energy for nonconductors but not to accommodate exciton states within the band gap, and no published IMFP data are available for CaF2. Our calculation was carried out using an electron-beam-solid-state interaction model through the relativistic full Penn algorithm. Integration limits that consider the band gap, the valence band width, and exciton interactions have been used. The results suggest that, at electron energies below 100 eV, the different choices of models for integration limits and the exciton interaction can affect the IMFP by 9-29%. At higher energies, the differences associated with the choice of energy-loss function and other input parameters are around 2.5-7.5%.

4.
Ultramicroscopy ; 206: 112819, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31421625

RESUMEN

Scanning electron microscopy (SEM) is a practical tool to determine the dimensions of nanometer-scale features. Conventional width measurements use arbitrary criteria, e.g., a 50 % threshold crossing, to assign feature boundaries in the measured SEM intensity profile. To estimate the errors associated with such a procedure, we have simulated secondary electron signals from a suite of line shapes consisting of 30 nm tall silicon lines with varying width, sidewall angle, and corner rounding. Four different inelastic scattering models were employed in Monte Carlo simulations of electron transport to compute secondary electron image intensity profiles for each of the shapes. The 4 models were combinations of dielectric function theory with either the single-pole approximation (SPA) or the full Penn algorithm (FPA), and either with or without Auger electron emission. Feature widths were determined either by the conventional threshold method or by the model-based library (MBL) method, which is a fit of the simulated profiles to the reference model (FPA + Auger). On the basis of these comparisons we estimate the error in the measured width of such features by the conventional procedure to be as much as several nanometers. A 1 nm difference in the size of, e.g., a nominally 10 nm transistor gate would substantially alter its electronic properties. Thus, the conventional measurements do not meet the contemporary requirements of the semiconductor industry. In contrast, MBL measurements employing models with varying accuracy differed one from another by less than 1 nm. Thus, a MBL measurement is preferable in the nanoscale domain.

5.
J Sci Comput ; 80(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-32165785

RESUMEN

The intensity variation in a scanning electron microscope is a complex function of sample topography and composition. Measurement accuracy is improved when an explicit accounting for the relationship between signal and measurand is made. Because the determinants of the signal are many, the theoretical understanding usually takes the form of a simulator. For samples with nonconducting regions that charge, one phase of the simulation is finite element analysis to compute the electric field. The size of the finite element mesh, and consequently computation time, can be reduced through the use of adaptive mesh refinement. We present a new a posteriori local error estimator and adaptive mesh refinement algorithm for the scanning electron microscope simulation. This error estimate is designed to minimize the error in the electron trajectories, rather than the energy norm of the error that traditional error estimators minimize. Using a test problem with a known exact solution, we show that the adaptive mesh can achieve the same error in electron trajectories as a carefully designed hand-graded mesh while using 3.5 times fewer vertices and 2.25 times less computation time.

6.
Microsc Microanal ; 23(5): 967-977, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28918765

RESUMEN

Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

7.
Microsc Microanal ; 22(4): 768-77, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27452278

RESUMEN

Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.

8.
J Micro Nanolithogr MEMS MOEMS ; 14(4): 0440011-440018, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26681991

RESUMEN

Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...