Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792836

RESUMEN

Marshes are an important ecosystem, acting as a biodiversity hotspot, a carbon sink and a bioremediation site, breaking down anthropogenic waste such as antibiotics, metals and fertilizers. Due to their participation in these metabolic activities and their capability to contribute to primary productivity, the microorganisms in such habitats have become of interest to investigate. Since Proteobacteria were previously found to be abundant and the waters are well aerated and organic-rich, this study on the presence of anoxygenic phototrophic bacteria, purple non-sulfur bacteria and aerobic anoxygenic phototrophs in marshes was initiated. One sample was collected at each of the seven Manitoban sites, and anoxygenic phototrophs were cultivated and enumerated. A group of 14 strains, which represented the phylogenetic diversity of the isolates, was physiologically investigated further. Aerobic anoxygenic phototrophs and purple non-sulfur bacteria were present at each location, and they belonged to the α- and ß-Proteobacteria subphyla. Some were closely related to known heavy metal reducers (Brevundimonas) and xenobiotic decomposers (Novosphingobium and Sphingomonas). All were able to synthesize the photosynthetic complexes aerobically. This research highlights the diversity of and the potential contributions that anoxygenic phototrophs make to the essential functions taking place in wetlands.

2.
Environ Microbiol ; 25(11): 2653-2665, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604501

RESUMEN

While investigating aerobic anoxygenic phototrophs (AAP) from Lake Winnipeg's bacterial community, over 500 isolates were obtained. Relatives of 20 different species were examined simultaneously, identifying conditions for optimal growth or pigment production to determine features that may unify this group of phototrophs. All were distributed among assorted α-Proteobacterial families including Erythrobacteraceae, Sphingomonadaceae, Sphingosinicellaceae, Acetobacteraceae, Methylobacteriaceae, and Rhodobacteraceae. Major phenotypic characteristics matched phylogenetic association, including pigmentation, morphology, metal transformations, tolerances, lipid configurations, and enzyme activities, which distinctly separated each taxonomic family. While varying pH and temperature had a limited independent impact on pigment production, bacteriochlorophyll synthesis was distinctly promoted under low nutrient conditions, whereas copiotrophy repressed its production but enhanced carotenoid yield. New AAP diversity was also reported by revealing strains related to non-phototrophic Rubellimicrobium and Sphingorhabdus, as well as spread throughout Roseomonas, Sphingomonas, and Methylobacterium/Methylorubrum, which previously only had a few known photosynthetic members. This study exemplified the overwhelming diversity of AAP in a single aquatic environment, confirming cultivation continues to be of importance in microbial ecology to discover functionality in both new and previously reported cohorts of bacteria as specific laboratory conditions were required to promote aerobic bacteriochlorophyll production.


Asunto(s)
Alphaproteobacteria , Bacterioclorofilas , Humanos , Filogenia , Bacterias Aerobias/genética , Ecosistema , Fotosíntesis
3.
Artículo en Inglés | MEDLINE | ID: mdl-37477965

RESUMEN

A polyphasic taxonomic study was carried out on a Gram-stain-negative and rod-shaped strain, ER-Te-42B-LightT, isolated from the tissue of a tube worm, Riftia pachyptila, collected near a deep-sea hydrothermal vent of the Juan de Fuca Ridge in the Pacific Ocean. This bacterium was capable of performing anaerobic respiration using tellurite, tellurate, selenite and orthovanadate as terminal electron acceptors. While facultatively anaerobic, it could aerobically resist tellurite, selenite and orthovanadate up to 2000, 7000 and 10000 µg ml-1, respectively, reducing each oxide to elemental forms. Nearly complete 16S rRNA gene sequence similarity related the strain to Shewanella, with 98.8 and 98.7 % similarity to Shewanella basaltis and Shewanella algicola, respectively. The dominant fatty acids were C16 : 0 and C16 : 1. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol and MK-7 was the predominant quinone. DNA G+C content was 42.5 mol%. Computation of average nucleotide identity and digital DNA-DNA hybridization values with the closest phylogenetic neighbours of ER-Te-42B-LightT revealed genetic divergence at the species level, which was further substantiated by differences in several physiological characteristics. Based on the obtained results, this bacterium was assigned to the genus Shewanella as a new species with the name Shewanella metallivivens sp. nov., type strain ER-Te-42B-LightT (=VKM B-3580T=DSM 113370T).


Asunto(s)
Respiraderos Hidrotermales , Metaloides , Shewanella , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Respiraderos Hidrotermales/microbiología , Anaerobiosis , Vanadatos , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Ácido Selenioso
5.
Microorganisms ; 10(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36144291

RESUMEN

In this first comprehensive study of Lake Winnipeg's microbial communities, limnetic and littoral euphotic zones were examined during each season from 2016 through 2020. Classical cultivation and modern high-throughput sequencing techniques provided quantification and identification of key phototrophic populations, including aerobic anoxygenic phototrophs (AAP). Annual dynamics found total heterotrophs reached 4.23 × 106 CFU/g in littoral sands, and 7.69 × 104 CFU/mL in summer littoral waters on oligotrophic media, higher counts than for copiotrophic compositions. Limnetic numbers inversely dipped to 4.34 × 103 CFU/mL midsummer. Cultured AAP did not follow heterotrophic trends, instead peaking during the spring in both littoral and limnetic waters as 19.1 and 4.7% of total copiotrophs, or 3.9 and 4.9% of oligotrophs, decreasing till autumn each year. Complementary observations came from environmental 16S V4 rRNA gene analysis, as AAP made up 1.49 and 1.02% of the littoral and limnetic sequenced communities in the spring, declining with seasonal progression. Spatial and temporal fluctuations of microbes compared to environmental factors exposed photosynthetic populations to independently and regularly fluctuate in the ecosystem. Oxygenic phototrophic numbers expectantly matched the midsummer peak of Chl a and b, oxygenic photosynthesis related carbon fixation, and water temperature. Independently, AAP particularly colonized spring littoral areas more than limnetic, and directly corresponded to habitat conditions that specifically promoted growth: the requirement of light and organic material.

6.
Arch Microbiol ; 204(7): 444, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776224

RESUMEN

Seven Gram-negative flagellated and subsequent prosthecate bacteria were isolated from meromictic Mahoney Lake and Blue Lake in British Columbia, Canada. Each became pink-red after 1-2 weeks of incubation, containing bacteriochlorophyll a incorporated into light harvesting and reaction center pigment-protein complexes. They did not grow anaerobically under illuminated conditions, supporting their identification as obligate aerobic anoxygenic phototrophs (AAP). All isolates preferred high salinity and BL14T tolerated up to 6.5% NaCl or 16.0% Na2SO4. In addition to phenotypic differences, analysis of 16S rRNA gene sequences found both strains BL14T and ML37T were related to Alkalicaulis satelles, G-192T by 98.41 and 98.84%, respectively, and distantly associated to members of the non-phototrophic genus Glycocaulis profundi, ZYF765T (95.59 and 95.36%, respectively) within the newly recognized Maricaulales order of α-Proteobacteria. BL14T and ML37T contained photosynthetic operons of 46,143 and 46,315 bp, where genes of BL14T were uniquely split into two distal operons. Furthermore, A. satelles was not originally published as an AAP, but was also found in this work to contain a similar 45,131 bp fragment. The distinct morphological features, physiological traits and genomic analysis including average nucleotide identity and digital DNA:DNA hybridization of circularized genomes supported the proposal of new genus and species Photocaulis sulfatitolerans gen. nov. sp. nov., type strain BL14T and Photocaulis rubescens sp. nov. type strain ML37T.


Asunto(s)
Alphaproteobacteria , Lagos , Alphaproteobacteria/genética , Colombia Británica , ADN , Filogenia , ARN Ribosómico 16S/genética
7.
Microorganisms ; 9(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946921

RESUMEN

Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+, V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments.

8.
Photosynth Res ; 144(3): 341-347, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32248389

RESUMEN

Spontaneous photosynthetic mutants of the aerobic anoxygenic phototrophic bacterium Roseicyclus mahoneyensis, strain ML6 have been identified based on phenotypic differences and spectrophotometric analysis. ML6 contains a reaction centre (RC) with absorption peaks at 755, 800, and 870 nm, light harvesting (LH) complex 1 at 870 nm, and monomodal LH2 at 805 nm; the mutant ML6(B) has only the LH2; ML6(DB) has also lost the LH1; in ML6(BN9O), the LH2 is absent and concentrations of LH1 and RC are much lower than in the wild type. RCs were isolated and purified from ML6 and ML6(BN9O); LH1-RC from ML6; and LH2 from ML6, ML6(B), and ML6(DB). All protein subunits composing the complexes were found to be of typical size. Flash-induced difference spectra revealed ML6 has a fully functional photosynthetic apparatus under aerobic and microaerophilic conditions, and as is typical for AAP, there is no photosynthetic activity anaerobically. ML6(BN9O), while also functional photosynthetically aerobically, showed lower rates due to the lack of LH2 and decreased concentrations of LH1 and RC. ML6(B) and ML6(DB) showed no photoinduced electron transport. Action spectra of light-mediated reactions were also performed on ML6 and ML6(BN9O) to reveal that the majority of carotenoids are not involved in light harvesting. Finally, redox titrations were carried out on membranes of ML6 and ML6(BN9O) to confirm that midpoint redox potentials of the QA, RC-bound cytochrome, and P+ were similar in both strains. QA midpoint potential is + 65 mV, cytochrome is + 245 mV, and P+ is + 430 mV.


Asunto(s)
Transporte de Electrón/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacteraceae/fisiología , Carotenoides/metabolismo , Citocromos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Oxidación-Reducción , Subunidades de Proteína , Rhodobacteraceae/genética , Rhodobacteraceae/efectos de la radiación
9.
Microorganisms ; 7(12)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766694

RESUMEN

Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.

10.
Arch Microbiol ; 200(10): 1411-1417, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30039321

RESUMEN

Environmental contamination by Te and Se oxyanions has become a serious concern, with the search for green, ecologically friendly methods for removal gaining ground. Bacteria capable of reducing these highly toxic compounds to a virtually non-toxic elemental form could provide a solution. In this study, four strains of bacteria with potential for bioremediation of Te and Se oxyanions were investigated. Under aerobic conditions over 48 h, Erythromicrobium ramosum, strain E5 removed 244 µg/ml tellurite and 98 µg/ml selenite, Erythromonas ursincola, KR99 203 µg/ml tellurite and 100 µg/ml selenite, AV-Te-18 98 µg/ml tellurite and 103 µg/ml selenite and ER-V-8 93 µg/ml tellurite and 103 µg/ml selenite. In the absence of oxygen, AV-Te-18 and ER-V-8 removed 10 µg/ml tellurite after 24 and 48 h, respectively and 46 and 25 µg/ml selenite, respectively, over 48 h. ER-V-8 removed 14 µg/ml selenate after 5 days. This highlights the great potential of these microbes for use in bioremediation.


Asunto(s)
Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Selenio/metabolismo , Telurio/metabolismo , Aniones , Biodegradación Ambiental
11.
Arch Microbiol ; 199(8): 1113-1120, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28432382

RESUMEN

Strain ER-Te-48 isolated from a deep-ocean hydrothermal vent tube worm is capable of resisting and reducing extremely high levels of tellurite, tellurate, and selenite, which are used for respiration anaerobically. Tellurite and tellurate reduction is accomplished by a periplasmic enzyme of 215 kDa comprised of 3 subunits (74, 42, and 25 kDa) in a 2:1:1 ratio. The optimum pH and temperature for activity is 8.0 and 35 °C, respectively. Tellurite reduction has a V max of 5.6 µmol/min/mg protein and a K m of 3.9 mM. In the case of the tellurate reaction, V max and K m were 2.6 µmol/min/mg protein and 2.6 mM, respectively. Selenite reduction is carried out by another periplasmic enzyme with a V max of 2.8 µmol/min/mg protein, K m of 12.1 mM, and maximal activity at pH 6.0 and 38 °C. This protein is 165 kDa and comprised of 3 subunits of 98, 44, and 23 kDa in a 1:1:1 ratio.


Asunto(s)
Respiraderos Hidrotermales/microbiología , Periplasma/enzimología , Ácido Selenioso/metabolismo , Shewanella/enzimología , Shewanella/metabolismo , Telurio/metabolismo , Oxidación-Reducción , Océano Pacífico , Filogenia
12.
Microorganisms ; 5(2)2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422063

RESUMEN

Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and characterized. The tellurite reductase has a molecular weight of 117 kDa, and is comprised of two subunits (62 and 55 kDa) in a 1:1 ratio. Optimal activity occurs at pH 7.0 and 28 °C. Tellurite reduction has a Vmax of 5.15 µmol/min/mg protein and a Km of 3.36 mM. The enzyme can also reduce tellurate with a Vmax and Km of 1.08 µmol/min/mg protein and 1.44 mM, respectively. This is the first purified membrane associated Te oxyanion reductase.

13.
Can J Microbiol ; 63(3): 212-218, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28194995

RESUMEN

A sampling trip to Central Gold Mine, Nopiming Provincial Park, Canada, was taken in September 2011. Abundance, distribution, and physiology of aerobic anoxygenic phototrophs (AAP) from 4 locations were studied. Enumeration revealed 14.6% of culturable microbes were AAP. Five strains (NM4.16, NM4.18, C4, C9, C11) were chosen for analysis. All grow best on complex media without vitamin requirements and with an optimal pH 7.0-8.0, with strain C4 preferring pH 6.0. Strain NM4.18 tolerates the highest pH 11.0. Optimal temperature for all is 28 °C (range of 2-37 °C except NM4.16, which survives 45 °C). Strains C9, C11, and NM4.18 grew in 1.0%, 2.0%, and 5.0% NaCl, respectively, while NM4.16 and C4 grew only without NaCl. Isolates were all highly resistant to toxic metal(oid) oxides: tellurite (1500 µg/mL, all), tellurate (1500 µg/mL, C11), selenite (5000 µg/mL, C9, C11, and NM4.18), selenate (1000 µg/mL, C9 and C11), and orthometavanadate and metavanadate (5000 µg/mL, C11 and NM4.18). They could reduce tellurite to the less toxic elemental tellurium. Full 16S rRNA gene sequencing revealed all strains are Alphaproteobacteria, with C4 and NM4.16 closely related to Porphyrobacter colymbi (99.4% and 99.7% sequence similarity, respectively), C9 to Brevundimonas variabilis (99.1%), C11 to Brevundimonas bacteroides (98.6%), and NM4.18 to Erythromonas ursincola (98.5%).


Asunto(s)
Alphaproteobacteria/aislamiento & purificación , Minería , Alphaproteobacteria/efectos de los fármacos , Alphaproteobacteria/genética , Canadá , ADN Bacteriano/genética , Oro , Manitoba , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio/farmacología , Telurio/farmacología , Temperatura
14.
PLoS One ; 11(2): e0149812, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914590

RESUMEN

Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biodiversidad , Respiraderos Hidrotermales/microbiología , Invertebrados/microbiología , Metales/química , Óxidos/metabolismo , Animales , Bacterias/genética , Variación Genética , Oxidación-Reducción , Óxidos/química , Océano Pacífico , Filogenia
15.
Extremophiles ; 19(5): 1013-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26254805

RESUMEN

The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.


Asunto(s)
Bacterias Anaerobias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Ácido Selenioso/metabolismo , Telurio/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Secuencia de Bases , Respiración de la Célula , Sedimentos Geológicos/química , Oro/análisis , Minería , Datos de Secuencia Molecular , Filogenia , Pseudomonas/genética , ARN Ribosómico 16S/genética
16.
Microorganisms ; 3(4): 826-38, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-27682119

RESUMEN

Six fresh water aerobic anoxygenic phototrophs (Erythromicrobium ezovicum, strain E1; Erythromicrobium hydrolyticum, E4(1); Erythromicrobium ramosum, E5; Erythromonas ursincola, KR99; Sandaracinobacter sibiricus, RB 16-17; and Roseococcus thiosulfatophilus, RB3) possessing high level resistance to TeO3(2-) and the ability to reduce it to elemental Te were studied to understand their interaction with this highly toxic oxyanion. Tested organic carbon sources, pH, and level of aeration all had an impact on reduction. Physiological and metabolic responses of cells to tellurite varied among strains. In its presence, versus absence, cellular biomass either increased (KR99, 66.6% and E5, 21.2%) or decreased (RB3, 66.1%, E1, 57.8%, RB 16-17, 41.5%, and E4(1), 21.3%). The increase suggests a possible benefit from tellurite. Cellular ATP production was similarly affected, resulting in an increase (KR99, 15.2% and E5, 38.9%) or decrease (E4(1), 31.9%; RB 16-17, 48.8%; RB3, 55.9%; E1, 35.9%). Two distinct strategies to tellurite reduction were identified. The first, found in E4(1), requires de novo protein preparations as well as an undisturbed whole cell. The second strategy, in which reduction depended on a membrane associated constitutive reductase, was used by the remaining strains.

17.
Photosynth Res ; 110(3): 193-203, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22228440

RESUMEN

Photosynthetic electron transfer has been examined in whole cells, isolated membranes and in partially purified reaction centers (RCs) of Roseicyclus mahoneyensis, strain ML6 and Porphyrobacter meromictius, strain ML31, two species of obligate aerobic anoxygenic phototrophic bacteria. Photochemical activity in strain ML31 was observed aerobically, but the photosynthetic apparatus was not functional under anaerobic conditions. In strain ML6 low levels of photochemistry were measured anaerobically, possibly due to incomplete reduction of the primary electron acceptor (Q(A)) prior to light excitation, however, electron transfer occurred optimally under low oxygen conditions. Photoinduced electron transfer involves a soluble cytochrome c in both strains, and an additional reaction center (RC)-bound cytochrome c in ML6. The redox properties of the primary electron donor (P) and Q(A) of ML31 are similar to those previously determined for other aerobic phototrophs, with midpoint redox potentials of +463 mV and -25 mV, respectively. Strain ML6 showed a very narrow range of ambient redox potentials appropriate for photosynthesis, with midpoint redox potentials of +415 mV for P and +94 mV for Q(A). Cytoplasm soluble and photosynthetic complex bound cytochromes were characterized in terms of apparent molecular mass. Fluorescence excitation spectra revealed that abundant carotenoids not intimately associated with the RC are not involved in photosynthetic energy conservation.


Asunto(s)
Alphaproteobacteria/fisiología , Alphaproteobacteria/efectos de la radiación , Luz , Fotosíntesis/efectos de la radiación , Aerobiosis/efectos de la radiación , Carotenoides/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Citocromos/metabolismo , Transporte de Electrón/efectos de la radiación , Electroforesis en Gel de Poliacrilamida , Hemo/metabolismo , Cinética , Oxidación-Reducción/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Unión Proteica , Solubilidad/efectos de la radiación , Espectrometría de Fluorescencia
18.
Cell Calcium ; 51(2): 164-70, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22209698

RESUMEN

µ-Calpain is a Ca(2+)-activated protease abundant in mammalian tissues. Here, we examined the effects of µ-calpain on three alternatively spliced variants of NCX1 using the giant, excised patch technique. Membrane patches from Xenopus oocytes expressing either heart (NCX1.1), kidney (NCX1.3), or brain (NCX1.4) variants of NCX1 were exposed to µ-calpain and their Na(+)-dependent (I(1)) and Ca(2+)-dependent (I(2)) regulatory phenotypes were assessed. For these exchangers, I(1) inactivation is evident as a Na(+)(i)-dependent decay of peak outward currents whereas I(2) regulation manifests as outward current activation by micromolar Ca(2+)(i) concentrations. Notably, with NCX1.1 and NCX1.4 but not in NCX1.3, higher Ca(2+)(i) levels alleviate I(1) inactivation. Our results show that (i) µ-calpain selectively ablates Ca(2+)-dependent (I(2)) regulation leading to a constitutive activation of exchange current, (ii) µ-calpain has much smaller effects on Na(+)-dependent (I(1)) regulation, produced by a slight destabilization of the I(1) state, and (iii) Ca(2+)-dependent regulation (I(2)) and Ca(2+)-mediated alleviation of I(1) appear to be functionally distinct mechanisms, the latter of which is left largely intact after µ-calpain treatment. The ability of µ-calpain to selectively and constitutively activate Na(+)-Ca(2+) exchange currents may have important pathophysiological implications in tissue where these splice variants are expressed.


Asunto(s)
Empalme Alternativo/fisiología , Encéfalo/metabolismo , Calpaína/metabolismo , Riñón/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calpaína/genética , Perros , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Intercambiador de Sodio-Calcio/genética , Xenopus laevis
19.
PLoS One ; 6(9): e25050, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949847

RESUMEN

BACKGROUND: Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. METHODOLOGY/PRINCIPAL FINDINGS: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. CONCLUSIONS/SIGNIFICANCE: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria.


Asunto(s)
Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , Genes Bacterianos , Variación Genética , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Carotenoides/genética , Genoma Bacteriano , Filogenia , Recombinación Genética
20.
Adv Exp Med Biol ; 675: 3-14, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20532732

RESUMEN

Biological soil crusts improve the health of arid or semiarid soils by enhancing water content, nutrient relations and mechanical stability, facilitated largely by phototrophic microorganisms. Until recently, only oxygenic phototrophs were known from soil crusts. A recent study has demonstrated the presence of aerobic representatives of Earth's second major photosynthetic clade, the evolutionarily basal anoxygenic phototrophs. Three Canadian soil crust communities yielded pink and orange aerobic anoxygenic phototrophic strains possessing the light-harvesting pigment bacteriochlorophyll a. At relative abundances of 0.1-5.9% of the cultivable bacterial community, they were comparable in density to aerobic phototrophs in other documented habitats. 16S rDNA sequence analysis revealed the isolates to be related to Methylobacterium, Belnapia, Muricoccus and Sphingomonas. This result adds a new type of harsh habitat, dry soil environments, to the environments known to support aerobic anoxygenic phototrophs.


Asunto(s)
Bacterias Aerobias/aislamiento & purificación , Fotosíntesis , Microbiología del Suelo , Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , Ambiente , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...