Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 12241, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699244

RESUMEN

Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.


Asunto(s)
Autofagia/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Mamíferos/inmunología , Animales , Sistemas CRISPR-Cas/inmunología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Infecciones/inmunología , Células Jurkat , Linfocitos T/inmunología , Células THP-1
2.
Elife ; 82019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30717826

RESUMEN

Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that vpu-deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses. Gene set enrichment analyses and cytokine arrays showed that Vpu suppresses the expression of NF-κB targets including interferons and restriction factors. Mutational analyses demonstrated that this immunosuppressive activity of Vpu is independent of its ability to counteract the restriction factor and innate sensor tetherin. However, Vpu-mediated inhibition of immune activation required an arginine residue in the cytoplasmic domain that is critical for blocking NF-κB signaling downstream of tetherin. In summary, our findings demonstrate that HIV-1 Vpu potently suppresses NF-κB-elicited antiviral immune responses at the transcriptional level.


Asunto(s)
VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Evasión Inmune , Inmunidad Innata , FN-kappa B/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Regulación hacia Abajo , Humanos , Transcripción Genética
3.
Plant Mol Biol ; 81(4-5): 337-46, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23288601

RESUMEN

A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Edición de ARN/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , Ecotipo , Metanosulfonato de Etilo , Genes de Plantas/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Unión Proteica/genética , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Uridina/metabolismo
4.
Plant J ; 61(3): 446-55, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19919573

RESUMEN

Post-transcriptional RNA editing in flowering plant mitochondria alters several hundred nucleotides from cytidine to uridine, mostly in mRNAs. To characterize the factors involved in RNA editing in plant mitochondria, we initiated a screen for nuclear mutants defective in RNA editing at specific sites. Here we identify the nuclear-encoded gene MEF11, which is involved in RNA editing of the three sites cox3-422, nad4-124 and ccb203-344 in Arabidopsis thaliana. A T-DNA insertion line of this gene was previously characterized as showing enhanced tolerance to the compound lovastatin, an inhibitor of the mevalonate pathway of isoprenoid biosynthesis. The mef11-1 mutant described here shows similar tolerance to lovastatin. Identification of the function of the MEF11 protein in site-specific mitochondrial RNA editing suggests indirect effects of retrograde signalling from mitochondria to the cytoplasm to evoke alteration of the mevalonate pathway. The editing sites cox3-422 and ccb203-344 each alter amino acids that are conserved in the respective proteins, while the nad4-124 site is silent. The single amino acid change in the mef11-1 mutant occurs in the second pentatricopeptide repeat, suggesting that this motif is required for site-specific RNA editing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia
5.
Plant Cell ; 21(2): 558-67, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19252080

RESUMEN

RNA editing in flowering plant mitochondria alters 400 to 500 nucleotides from C to U, changing the information content of most mRNAs and some tRNAs. So far, none of the specific or general factors responsible for RNA editing in plant mitochondria have been identified. Here, we characterize a nuclear-encoded gene that is involved in RNA editing of three specific sites in different mitochondrial mRNAs in Arabidopsis thaliana, editing sites rps4-956, nad7-963, and nad2-1160. The encoded protein MITOCHONDRIAL RNA EDITING FACTOR1 (MEF1) belongs to the DYW subfamily of pentatricopeptide repeat proteins. Amino acid identities altered in MEF1 from ecotype C24, in comparison to Columbia, lower the activity at these editing sites; single amino acid changes in mutant plants inactivate RNA editing. These variations most likely modify the affinity of the editing factor to the affected editing sites in C24 and in the mutant plants. Since lowered and even absent RNA editing is tolerated at these sites, the amino acid changes may be silent for the respective protein functions. Possibly more than these three identified editing sites are addressed by this first factor identified for RNA editing in plant mitochondria.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Edición de ARN/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Estructura Terciaria de Proteína , ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , ARN Mitocondrial
6.
Mitochondrion ; 8(4): 319-27, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18678284

RESUMEN

Most RNA editing sites in flowering plant mitochondria are located in coding regions of mRNAs and are usually essential for correct gene expression. Although accordingly little variation should be tolerated, editing sites appear and disappear even between closely related flowering plant species. To investigate whether such editing site variations also occur within species, we analyzed 379 RNA editing sites in the three ecotypes Columbia, Landsberg erecta and C24 of Arabidopsis thaliana. While all editing sites as such are conserved, we identify seven RNA editing sites with 40-60% differences in effective editing between individual ecotypes. These quantitative variations show that the extent of RNA editing in plant mitochondria is very flexible and can change even more rapidly than the evolution of species. The ecotype-specific variations of the RNA editing extent are Mendelian-inherited and can now be used to follow and identify the nuclear loci responsible for these RNA editing phenotypes.


Asunto(s)
Arabidopsis/genética , Mitocondrias/genética , Edición de ARN/genética , ARN de Planta/genética , Flores/genética , Hojas de la Planta/genética
7.
J Biol Chem ; 283(36): 24374-81, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18596040

RESUMEN

Analysis of RNA editing in plant mitochondria has at least in vitro been hampered by very low activity. Consequently, none of the trans-acting factors involved has yet been identified. We here report that in vitro RNA editing increases dramatically when additional cognate recognition motifs are introduced into the template RNA molecule. Substrate RNAs with tandemly repeated recognition elements enhance in vitro RNA editing from 2-3% to 50-80%. The stimulation is not influenced by the editing status of a respective RNA editing site, suggesting that specific recognition of a site can be independent of the edited nucleotide itself. In vivo, attachment of the editing complex may thus be analogously initiated at sequence similarities in the vicinity of bona fide editing sites. This cis-acting enhancement decreases with increasing distance between the duplicated specificity signals; a cooperative effect is detectable up to approximately 200 nucleotides. Such repeated template constructs promise to be powerful tools for the RNA affinity identification of the as yet unknown trans-factors of plant mitochondrial RNA editing.


Asunto(s)
Brassica/metabolismo , Mitocondrias/metabolismo , Edición de ARN/fisiología , ARN de Planta/metabolismo
8.
Mitochondrion ; 8(1): 35-46, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18326075

RESUMEN

RNA editing changes more than 400 cytidines to uridines in the mRNAs of mitochondria in flowering plants. In other plants such as ferns and mosses, RNA editing reactions changing C to U and U to C are observed at almost equal frequencies. Development of transfection systems with isolated mitochondria and of in vitro systems with extracts from mitochondria has considerably improved our understanding of the recognition of specific editing sites in the last few years. These assays have also yielded information about the biochemical parameters, but the enzymes involved have not yet been identified. Here we summarize our present understanding of the process of RNA editing in flowering plant mitochondria.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Plantas/genética , Edición de ARN/fisiología , Brassica/genética , Ligasas de Carbono-Nitrógeno/fisiología , Citidina Desaminasa/fisiología , Desaminación , Evolución Molecular , Genoma Mitocondrial/fisiología , Genoma de Planta/fisiología , Pisum sativum/genética , ARN Helicasas/fisiología , Transaminasas/fisiología , Triticum/genética , Zea mays/genética
9.
FEBS Lett ; 581(14): 2743-7, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17531229

RESUMEN

RNA editing in flowering plant mitochondria is investigated by in vitro assays. These cauliflower mitochondrial lysates require added NTP or dNTP. We have now resolved the reason for this requirement to be the inhibition of the RNA binding activity of the glutamate dehydrogenases (GDH). Both GDH1 and GDH2 were identified in RNA-protein cross-links. The inhibition of in vitro RNA editing by GDH is confirmed by the ability of the GDH-specific herbicide phosphinothricin to substitute for NTP. NADH and NADPH, but not NAD or NADP, can also replace NTP, suggesting that the NAD(P)H-binding-pocket configuration of the GDH contacts the RNA. RNA editing in plant mitochondria is thus intrinsically independent of added energy in the form of NTP.


Asunto(s)
Brassica/genética , Mitocondrias/genética , Edición de ARN , ARN/genética , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Aminobutiratos/farmacología , Citidina Trifosfato/metabolismo , Citidina Trifosfato/farmacología , Glutamato Deshidrogenasa/antagonistas & inhibidores , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa (NADP+)/antagonistas & inhibidores , Glutamato Deshidrogenasa (NADP+)/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , NAD/metabolismo , NAD/farmacología , Unión Proteica , ARN/metabolismo , ARN Mitocondrial , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
J Plant Physiol ; 164(9): 1231-4, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17350139

RESUMEN

A cDNA, up-regulated upon treatment of tobacco cells with salicylic acid and benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester, was identified by differential RNA display and the full sequence obtained. This mitochondrial gene, twin arginine translocation (tatC), resembles orthologues across different species, including the gene that codes for a sec-independent membrane translocating protein in bacteria. Hypothetical tatC proteins have also been identified in the mitochondria of Arabidopsis thaliana, Oenothera berteriana, Beta vulgaris, Oryza sativa and Marchantia polymorpha. Comparative protein analysis indicates a similar function for the tatC gene. The up-regulation of the tatC gene in a 3kbp transcript was confirmed by RNA gel blot analysis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Nicotiana/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Tiadiazoles/farmacología , N-Acetiltransferasa de Aminoácidos , Datos de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/farmacología , Nicotiana/genética , Nicotiana/metabolismo
11.
J Plant Physiol ; 163(8): 877-82, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16777535

RESUMEN

An inducer of acquired disease resistance in plants, benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester, exhibited direct, concentration-dependent inhibition of the NADH:ubiquinone oxidoreductase activity of complex I of the mitochondrial electron transport chain of cultured tobacco cells. The complex I activity was less sensitive to inhibition by salicylic acid, an endogenous activator of acquired disease resistance. Using a dichlorodihydrofluorescein assay, it was found that benzothiadiazole, salicylic acid and the complex I inhibitor rotenone, increased reactive oxygen species production within cells in a concentration-dependent manner. The results indicate that both benzothiadiazole and salicylic acid affect the mitochondria of treated plant cells and result in increased production of reactive oxygen species. The biochemical basis of this response could be related to the inhibition of the NADH:ubiquinone oxidoreductase activity of complex I that results in channelling of electrons via complex II, with concomitant higher levels of superoxide production.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Proteínas Mitocondriales/antagonistas & inhibidores , Nicotiana/efectos de los fármacos , Proteínas de Plantas/antagonistas & inhibidores , Tiadiazoles/farmacología , Células Cultivadas , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Ácido Salicílico/farmacología , Nicotiana/enzimología
12.
Plant J ; 47(3): 408-16, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16774644

RESUMEN

RNA editing in flowering plant mitochondria addresses several hundred specific C nucleotides in individual sequence contexts in mRNAs and tRNAs. Many of the in vivo steady state RNAs are edited at some sites but not at others. It is still unclear whether such incompletely edited RNAs can either be completed or are aborted. To learn more about the dynamics of the substrate recognition process, we investigated in vitro RNA editing at a locus in the atp4 mRNA where three editing sites are clustered within four nucleotides. A single cis-element of about 20 nucleotides serves in the recognition of at least two sites. Competition with this sequence element suppresses in vitro editing. Surprisingly, unedited and edited competitors are equally effective. Experiments with partially pre-edited substrates indicate that indeed the editing status of a substrate RNA does not affect the binding affinity of the specificity factor(s). RNA molecules in which all editing sites are substituted by either A or G still compete, confirming that editing site recognition can occur independently of the actual editing site. These results show that incompletely edited mRNAs can be substrates for further rounds of RNA editing, resolving a long debated question.


Asunto(s)
Brassica/genética , Edición de ARN/fisiología , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Unión Competitiva , Brassica/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , ARN Mitocondrial , ARN de Transferencia/metabolismo , Alineación de Secuencia
13.
FEBS Lett ; 580(1): 268-72, 2006 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-16364306

RESUMEN

RNA editing in flowering plant mitochondria alters numerous C nucleotides in a given mRNA molecule to U residues. To investigate whether neighbouring editing sites can influence each other we analyzed in vitro RNA editing of two sites spaced 30 nt apart. Deletion and competition experiments show that these two sites carry independent essential specificity determinants in the respective upstream 20-30 nucleotides. However, deletion of a an upstream sequence region promoting editing of the upstream site concomitantly decreases RNA editing of the second site 50-70 nucleotides downstream. This result suggests that supporting cis-/trans-interactions can be effective over larger distances and can affect more than one editing event.


Asunto(s)
Brassica/fisiología , Flores/fisiología , Mitocondrias/fisiología , Edición de ARN/fisiología , Eliminación de Secuencia , Citidina/genética , Uridina/genética
14.
RNA ; 11(10): 1563-70, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16131591

RESUMEN

Most of the 400 RNA editing sites in flowering plant mitochondria are found in mRNAs. Consequently, the sequence vicinities of homologous sites are highly conserved between different species and are presumably recognized by likewise conserved trans-factors. To investigate the evolutionary adaptation to sequence variation, we have now analyzed the recognition elements of an editing site with divergent upstream sequences in the two species pea and cauliflower. This variation is tolerated at the site selected, because the upstream cis-elements reach into the 5'-UTR of the mRNA. To compare cis-recognition features in pea and cauliflower mitochondria, we developed a new in vitro RNA editing system for cauliflower. In vitro editing assays with deleted and mutated template RNAs show that the major recognition elements for both species are located within the conserved sequence. In cauliflower, however, the essential upstream nucleotides extend further upstream than they do in pea. In-depth analysis of single-nucleotide mutations reveals critical spacing of the editing site and the specific recognition elements, and shows that the +1 nucleotide identity is important in cauliflower, but not in pea.


Asunto(s)
Brassica/genética , Edición de ARN , ARN de Planta/química , ARN/química , Regiones no Traducidas 5' , Proteínas de Arabidopsis , Secuencia de Bases , Brassica/citología , Extractos Celulares , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Secuencia Conservada , Evolución Molecular , Variación Genética , Técnicas In Vitro , ATPasas de Translocación de Protón Mitocondriales , Datos de Secuencia Molecular , Pisum sativum/citología , Pisum sativum/genética , Mutación Puntual , ARN/metabolismo , ARN Mitocondrial , ARN de Planta/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...