Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Arch Biochem Biophys ; 760: 110127, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39154818

RESUMEN

Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits. We evaluated Chloracidobacterium thermophilum PilB (CtPilB) as a model for structure-based virtual screening by molecular docking and molecular dynamics (MD) simulations. A hexameric structure of CtPilB was generated through homology modeling based on an existing crystal structure of a PilB from Geobacter metallireducens. Four representative structures were obtained from molecular dynamics simulations to examine the conformational plasticity of PilB and improve docking analyses by ensemble docking. Structural analyses after 1 µs of simulation revealed conformational changes in individual PilB subunits are dependent on ligand presence. Further, ensemble virtual screening of a library of 4234 compounds retrieved from the ZINC15 database identified five promising PilB inhibitors. Molecular docking and binding analyses using the four representative structures from MD simulations revealed that top-ranked compounds interact with multiple Walker A residues, one Asp-box residue, and one arginine finger, indicating these are key residues in inhibitor binding within the ATP binding pocket. The use of multiple conformations in molecular screening can provide greater insight into compound flexibility within receptor sites and better inform future drug development for therapeutics targeting the type IV pilus assembly ATPase.


Asunto(s)
Proteínas Bacterianas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/química , Acidobacteria/metabolismo , Acidobacteria/química , Antibacterianos/farmacología , Antibacterianos/química , Evaluación Preclínica de Medicamentos , Secuencia de Aminoácidos , Oxidorreductasas
2.
BMC Microbiol ; 24(1): 300, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135165

RESUMEN

BACKGROUND: Rhododendron delavayi is a natural shrub that is distributed at different elevations in the karst region of Bijie, China, and that has an important role in preventing land degradation in this region. In this study, we determined the soil mineral element contents and soil enzyme activities. The composition of the soil bacterial community of R. delavayi at three elevations (1448 m, 1643 m, and 1821 m) was analyzed by high-throughput sequencing, and the interrelationships among the soil bacterial communities, mineral elements, and enzyme activities were determined. RESULTS: The Shannon index of the soil bacterial community increased and then decreased with increasing elevation and was highest at 1643 m. Elevations increased the number of total nodes and edges of the soil bacterial community network, and more positive correlations at 1821 m suggested stronger intraspecific cooperation. Acidobacteria, Actinobacteria and Proteobacteria were the dominant phyla at all three elevations. The Mantel test and correlation analysis showed that Fe and soil urease significantly affected bacterial communities at 1448 m; interestingly, Chloroflexi was positively related to soil urease at 1448 m, and Actinobacteria was positively correlated with Ni and Zn at 1821 m. Fe and soil urease significantly influenced the bacterial communities at lower elevations, and high elevation (1821 m) enhanced the positive interactions of the soil bacteria, which might be a strategy for R. delavayi to adapt to high elevation environments. CONCLUSION: Elevation significantly influenced the composition of soil bacterial communities by affecting the content of soil mineral elements and soil enzyme activity.


Asunto(s)
Bacterias , Bosques , Rhododendron , Microbiología del Suelo , Suelo , Suelo/química , Rhododendron/microbiología , China , Bacterias/clasificación , Bacterias/genética , Bacterias/enzimología , Bacterias/aislamiento & purificación , Metales/análisis , Actinobacteria/genética , Actinobacteria/enzimología , Actinobacteria/aislamiento & purificación , Actinobacteria/clasificación , Microbiota , Ureasa/metabolismo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Acidobacteria/enzimología , Acidobacteria/clasificación , ARN Ribosómico 16S/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Artículo en Inglés | MEDLINE | ID: mdl-39196616

RESUMEN

Two new strains JP48T and JP55 affiliated with the acidobacterial class Terriglobia have been isolated from fen soil sampled in the Fichtelgebirge Mountains near Bayreuth, Germany. Both strains were Gram-stain-negative, non-motile, non-spore-forming rods that divide by binary fission, segregate exopolysaccharide-like material and form capsules. Strains JP48T and JP55 grew at 4-36 °C (optimum at 27 °C), pH 3.6-7.3 (optimum at pH 4.6-5.5) and with NaCl concentrations of 0-3% (optimum at 1.0%; w/v). Strains JP48T and JP55 grew aerobically on a wide range of organic substrates including mono- and oligosaccharides, amino acids and short-chained fatty acids. MK-8 was identified as the major respiratory quinone. The major fatty acids for strains JP48T and JP55 were iso-C15 : 0, C16 : 1 ω7c, C16 : 0 and iso-diabolic acid. Phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, lysophophatidylethanolamine, phosphatidylcholine, unidentified glyco- and glycophospholipids, and unidentified high mass lipid species were the major polar membrane lipids. The G+C content of strains JP48T and JP55 was 57.4 and 57.2 mol%, respectively. The genomes of strains JP48T and JP55 contained nine potential secondary metabolite regions encoding for the compound classes NRPS(-like), T3PKS, terpene, or lanthipeptide class IV. Phylogenetic reconstruction and 16S rRNA gene sequence similarities of 98.3 and 96.9% identified Edaphobacter dinghuensis DHF9T and Edaphobacter lichenicola DSM 104462T as the most closely related type strains to strains JP48T and JP55. Based on their phenotype, phylogeny and chemotaxonomy, we propose the novel species Edaphobacter paludis sp. nov. (type strain JP48T=DSM 109919T=CECT 30269T; additional strain JP55=DSM 109920=CECT 30268) within the class Terriglobia of the phylum Acidobacteriota.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , Alemania , Vitamina K 2/análogos & derivados , Quinonas/análisis , Acidobacteria/genética , Acidobacteria/clasificación , Acidobacteria/aislamiento & purificación , Fosfolípidos/química
4.
Huan Jing Ke Xue ; 45(6): 3605-3613, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897780

RESUMEN

It is of great significance for the conservation of biodiversity in farmland ecosystems to study the diversity, structure, functions, and biogeographical distribution of soil microbes in farmland and their influencing factors. High-throughput sequencing technology was used to analyze the distribution characteristics of soil bacterial diversity, community structure, and metabolic function along elevation and their responses to soil physicochemical properties in farmland in the loess hilly areas of Ningxia. The results showed that:① The Alpha diversity index of soil bacterial was significantly negatively correlated with elevation (P < 0.05) and showed a trend of decreasing and then slightly increasing along the elevation. ② Seven phyla, including Proteobacteria, Actinobacteria, and Acidobacteria, were the dominant groups, and five of them showed highly significant differences between altitudes (P < 0.01). ③ At the secondary classification level, there were 36 metabolic functions of bacteria, including membrane transport, carbohydrate metabolism, and amino acid metabolism, of which 22 showed significant differences, and 12 showed extremely significant differences among different altitudes. ④ Pearson correlation analysis showed that soil water content, bulk density, pH, and carbon-nitrogen ratio had the most significant effects on bacterial Alpha diversity, whereas soil nutrients such as total organic carbon, total nitrogen, and total phosphorus had significant effects on bacterial Beta diversity. ⑤ Mantel test analysis showed that the soil water content, total organic carbon, and carbon-nitrogen ratio affected bacterial community structure at the phylum level, and soil pH, total organic carbon, total nitrogen, total phosphorus, and carbon-nitrogen ratio were significantly correlated with bacterial metabolic function. Variance partitioning analysis showed that soil water content had the highest explanation for the community structure of soil bacteria, whereas soil pH had the highest explanation for metabolic function. In conclusion, soil water content and pH were the main factors affecting the diversity, community composition, and metabolic function of soil bacteria in farmland in the loess hilly region of Ningxia.


Asunto(s)
Altitud , Bacterias , Microbiología del Suelo , China , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Suelo/química , Biodiversidad , Productos Agrícolas/crecimiento & desarrollo , Proteobacteria/aislamiento & purificación , Proteobacteria/crecimiento & desarrollo , Nitrógeno/análisis , Actinobacteria/crecimiento & desarrollo , Ecosistema , Acidobacteria/crecimiento & desarrollo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Fósforo/análisis
5.
Sci Total Environ ; 946: 174276, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936715

RESUMEN

Soil legacy effects from previous crops can significantly influence plant-soil interactions in crop rotations. However, the microbial mechanism underlying this effect in subsequent root-associated compartments remains unclear. We investigated the effects of planting patterns (four-year continuous maize [MM], three-year winter wheat and one-year maize rotation [WM], and three-year potato and one-year maize rotation [PM]) on the microbial composition and structure of root-associated compartments, the effect of distinct crops on subsequent microbial co-occurrence patterns, and the assembly mechanism by which the root-associated compartments (bulk soil, rhizosphere, and roots) in subsequent crops regulate the microbiome habitat. Compared with MM, the relative abundance of Acidobacteria in WM was 29.7 % lower, whereas that of Bacteroidota in PM was 37.9 % higher in all three compartments. The co-occurrence patterns of the microbial communities exhibited varied responses to different planting patterns. Indicator taxon analysis revealed less shared and specific species in the root bacterial and fungal networks. The planting pattern elicited specific responses from modules within bacterial and fungal co-occurrence networks in all three compartments. Moreover, the planting patterns and root-associated compartments collectively drove the assembly process of root-associated microorganisms. The neutral model showed that, compared with MM, the stochasticity of bacterial assembly decreased under WM and PM but increased for fungal assembly. WM and PM increased the relative effects of the homogenized dispersal of fungal assemblies in roots. We conclude that previous crops exhibit marked legacy effects in the root-associated microbiome. Therefore, soil heritage should not be ignored when discussing microbiome recruitment strategies and co-occurrence patterns in subsequent crops.


Asunto(s)
Agricultura , Productos Agrícolas , Raíces de Plantas , Microbiología del Suelo , Raíces de Plantas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Agricultura/métodos , Acidobacteria , Rizosfera
6.
Environ Microbiol ; 26(5): e16640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775217

RESUMEN

Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of Terriglobia, a common but elusive group within the Acidobacteriota phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete Acidobacteriota genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish Acidobacteriota strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with Edaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have named Tunturibacter. We describe four new species: Tunturibacter lichenicola comb. nov., Tunturibacter empetritectus sp. nov., Tunturibacter gelidoferens sp. nov., and Tunturibacter psychrotolerans sp. nov. By uncovering new species and strains within the Terriglobia and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.


Asunto(s)
Genoma Bacteriano , Filogenia , Microbiología del Suelo , Tundra , Acidobacteria/genética , Acidobacteria/clasificación , Acidobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Regiones Árticas
7.
Arch Microbiol ; 206(5): 239, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689148

RESUMEN

Camellia sinensis is an important economic plant grown in southern subtropical hilly areas, especially in China, mainly for the production of tea. Soil acidification is a significant cause of the reduction of yield and quality and continuous cropping obstacles in tea plants. Therefore, chemical and microbial properties of tea growing soils were investigated and phenolic acid-degrading bacteria were isolated from a tea plantation. Chemical and ICP-AES investigations showed that the soils tested were acidic, with pH values of 4.05-5.08, and the pH negatively correlated with K (p < 0.01), Al (p < 0.05), Fe and P. Aluminum was the highest (47-584 mg/kg) nonessential element. Based on high-throughput sequencing, a total of 34 phyla and 583 genera were identified in tea plantation soils. Proteobacteria and Acidobacteria were the main dominant phyla and the highest abundance of Acidobacteria was found in three soils, with nearly 22% for the genus Gp2. Based on the functional abundance values, general function predicts the highest abundance, while the abundance of amino acids and carbon transport and metabolism were higher in soils with pH less than 5. According to Biolog Eco Plate™ assay, the soil microorganisms utilized amino acids well, followed by polymers and phenolic acids. Three strains with good phenolic acid degradation rates were obtained, and they were identified as Bacillus thuringiensis B1, Bacillus amyloliquefaciens B2 and Bacillus subtilis B3, respectively. The three strains significantly relieved the inhibition of peanut germination and growth by ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, cinnamic acid, and mixed acids. Combination of the three isolates showed reduced relief of the four phenolic acids due to the antagonist of B2 against B1 and B3. The three phenolic acid degradation strains isolated from acidic soils display potential in improving the acidification and imbalance in soils of C. sinensis.


Asunto(s)
Camellia sinensis , Hidroxibenzoatos , Microbiología del Suelo , Suelo , Hidroxibenzoatos/metabolismo , Suelo/química , Concentración de Iones de Hidrógeno , Camellia sinensis/microbiología , Camellia sinensis/metabolismo , China , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Té/microbiología , Té/química , Acidobacteria/metabolismo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación
8.
Antonie Van Leeuwenhoek ; 117(1): 68, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630330

RESUMEN

In this research, two novel Fe(III)-reducing bacteria, SG10T and SG198T of genus Geothrix, were isolated from the rice field of Fujian Agriculture and Forestry University in Fuzhou, Fujian Province, China. Strains SG10T and SG198T were strictly anaerobic, rod-shaped and Gram-stain-negative. The two novel strains exhibited iron reduction ability, utilizing various single organic acid as the elector donor and Fe(III) as a terminal electron acceptor. Strains SG10T and SG198T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix oryzisoli SG189T (99.0-99.5%) and Geothrix paludis SG195T (99.0-99.7%), respectively. The phylogenetic trees based on the 16S rRNA gene and genome 120 conserved core genes showed that strains SG10T and SG198T belong to the genus Geothrix. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the phylogenetic neighbors and the two isolated strains were 86.1-94.3% and 30.7-59.5%, respectively. The major fatty acids were iso-C15:0, anteiso-C15:0, C16:0 and iso-C13:0 3OH, and MK-8 was the main respiratory quinone. According to above results, the two strains were assigned to the genus Geothrix with the names Geothrix campi sp. nov. and Geothrix mesophila sp. nov. Type strains are SG10T (= GDMCC 1.3406 T = JCM 39331 T) and SG198T (= GDMCC 62910 T = KCTC 25635 T), respectively.


Asunto(s)
Compuestos Férricos , Suelo , Humanos , Filogenia , ARN Ribosómico 16S/genética , Acidobacteria , Bacterias , ADN
9.
Sci Rep ; 14(1): 6440, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499631

RESUMEN

This study aimed at exploring the effects of γ-polyglutamic acid on the growth of desert alfalfa and the soil microorganisms in the rhizosphere. The study examined the effects of varying concentrations of γ-polyglutamic acid (0%-CK, 2%-G1, 4%-G2, 6%-G3) on sandy soil, the research investigated its impact on the growth characteristics of alfalfa, nutrient content in the rhizosphere soil, and the composition of bacterial communities. The results indicated that there were no significant differences in soil organic matter, total nitrogen, total phosphorus, total potassium, and available phosphorus content among the G1, G2, and G3 treatments. Compared to CK, the soil nutrient content in the G2 treatment increased by 14.81-186.67%, showing the highest enhancement. In terms of alfalfa growth, the G2 treatment demonstrated the best performance, significantly increasing plant height, chlorophyll content, above-ground biomass, and underground biomass by 54.91-154.84%. Compared to the CK treatment, the number of OTUs (operational taxonomic units) in the G1, G2, and G3 treatments increased by 14.54%, 8.27%, and 6.84%, respectively. The application of γ-polyglutamic acid altered the composition and structure of the bacterial community, with Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota accounting for 84.14-87.89% of the total bacterial community. The G2 treatment significantly enhanced the diversity and evenness of soil bacteria in the rhizosphere. Redundancy analysis revealed that organic matter, total nitrogen, total potassium, moisture content, and pH were the primary factors influencing the structure of bacterial phyla. At the genus level, moisture content emerged as the most influential factor on the bacterial community. Notably, moisture content exhibited a strong positive correlation with Acidobacteriota, which in turn was positively associated with indicators of alfalfa growth. In summary, the application of γ-polyglutamic acid at a 4% ratio has the potential for improving sandy soil quality, promoting plant growth, and regulating the rhizosphere microbial community.


Asunto(s)
Arena , Suelo , Suelo/química , Medicago sativa , Rizosfera , Ácido Poliglutámico , Microbiología del Suelo , Bacterias , Acidobacteria , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Suplementos Dietéticos/análisis
10.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514851

RESUMEN

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Asunto(s)
Bacterias , Suelo , ARN Ribosómico 16S/genética , Brasil , Bacterias/genética , Acidobacteria/genética , Microbiología del Suelo
11.
Sci Total Environ ; 925: 171811, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508263

RESUMEN

The composition and functioning of soil bacterial communities, as well as their responses to multiple perturbations, are not well understood in the terrestrial ecosystems. Our study focuses on the bacterial community of erosive and poorly developed soils (Haplic Leptosols) in Mediterranean rangelands of Extremadura (W Spain) with different grazing intensities. Leptosols from similar natural conditions were selected and sampled at two depths to determine the soil properties as well as the structure and activity of bacterial communities. As grazing intensified, the soil C and N content increased, as did the number and diversity of bacteria, mainly of fast-growing lineages. Aridibacter, Acidobacteria Gp6 and Gp10, Gemmatimonas, and Segetibacter increased their abundance along the grazing-intensity gradient. Firmicutes such as Romboutsia and Turicibacter from livestock microbiome also increased. In functional terms, the KEGG pathways enriched in the soils with moderate and high grazing intensity were ABC transporters, DNA repair and recombination proteins, the two-component system, and the degradation of xenobiotics. All of these proved to be related to stronger cell division and response mechanisms to environmental stressors such as drought, warming, toxic substances, and nutrient deprivation. Consequently, the bacterial community was affected by grazing, but appeared to adapt and counteract the effects of a high grazing intensity. Therefore, a clearly detrimental effect of grazing was not detected in the bacterial community of the soils studied.


Asunto(s)
Ecosistema , Microbiota , Animales , Ganado , Microbiología del Suelo , Bacterias/genética , Acidobacteria , Suelo/química
12.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338664

RESUMEN

Irrigation and fertilization are essential management practices for increasing forest productivity. They also impact the soil ecosystem and the microbial population. In order to examine the soil bacterial community composition and structure in response to irrigation and fertilization in a Eucalyptus plantations, a total of 20 soil samples collected from Eucalyptus plantations were analyzed using high-throughput sequencing. Experimental treatments consisting of control (CK, no irrigation or fertilization), fertilization only (F), irrigation only (W), and irrigation and fertilization (WF). The results showed a positive correlation between soil enzyme activities (urease, cellulase, and chitinase) and fertilization treatments. These enzyme activities were also significantly correlated with the diversity of soil bacterial communities in Eucalyptus plantations.. Bacteria diversity was considerably increased under irrigation and fertilization (W, F, and WF) treatments when compared with the CK treatment. Additionally, the soil bacterial richness was increased in the Eucalyptus plantations soil under irrigation (W and WF) treatments. The Acidobacteria (38.92-47.9%), Proteobacteria (20.50-28.30%), and Chloroflexi (13.88-15.55%) were the predominant phyla found in the Eucalyptus plantations soil. Specifically, compared to the CK treatment, the relative abundance of Proteobacteria was considerably higher under the W, F, and WF treatments, while the relative abundance of Acidobacteria was considerably lower. The contents of total phosphorus, accessible potassium, and organic carbon in the soil were all positively associated with fertilization and irrigation treatments. Under the WF treatment, the abundance of bacteria associated with nitrogen and carbon metabolisms, enzyme activity, and soil nutrient contents showed an increase, indicating the positive impact of irrigation and fertilization on Eucalyptus plantations production. Collectively, these findings provide the scientific and managerial bases for improving the productivity of Eucalyptus plantations.


Asunto(s)
Eucalyptus , Suelo , Suelo/química , Ecosistema , Bacterias , Proteobacteria , Acidobacteria , Carbono , Fertilización , Microbiología del Suelo
13.
PeerJ ; 12: e16907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344295

RESUMEN

Intercropping is an efficient land use and sustainable agricultural practice widely adopted worldwide. However, how intercropping influences the structure and function of soil bacterial communities is not fully understood. Here, the effects of five cropping systems (sole sorghum, sole millet, sole peanut, sorghum/peanut intercropping, and millet/peanut intercropping) on soil bacterial community structure and function were investigated using Illumina MiSeq sequencing. The results showed that integrating peanut into intercropping systems increased soil available nitrogen (AN) and total nitrogen (TN) content. The alpha diversity index, including Shannon and Chao1 indices, did not differ between the five cropping systems. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) illustrated a distinct separation in soil microbial communities among five cropping systems. Bacterial phyla, including Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, were dominant across all cropping systems. Sorghum/peanut intercropping enhanced the relative abundance of phyla Actinobacteriota and Chloroflexi compared to the corresponding monocultures. Millet/peanut intercropping increased the relative abundance of Proteobacteria, Acidobacteriota, and Nitrospirota. The redundancy analysis (RDA) indicated that bacterial community structures were primarily shaped by soil organic carbon (SOC). The land equivalent ratio (LER) values for the two intercropping systems were all greater than one. Partial least squares path modeling analysis (PLS-PM) showed that soil bacterial community had a direct effect on yield and indirectly affected yield by altering soil properties. Our findings demonstrated that different intercropping systems formed different bacterial community structures despite sharing the same climate, reflecting changes in soil ecosystems caused by interspecific interactions. These results will provide a theoretical basis for understanding the microbial communities of peanut-based intercropping and guide agricultural practice.


Asunto(s)
Chloroflexi , Microbiota , Suelo/química , Arachis/microbiología , Carbono , Microbiología del Suelo , Bacterias/genética , Acidobacteria , Proteobacteria , Nitrógeno
14.
Environ Sci Pollut Res Int ; 31(14): 21509-21523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393555

RESUMEN

Ozone-biologically activated carbon (BAC) filtration is an advanced treatment process that can be applied to remove recalcitrant organic micro-pollutants in drinking water treatment plants (DWTPs). In this study, we continuously monitored a new and an old BAC filter in a DWTP for 1 year to compare their water purification performance and microbial community evolution. The results revealed that, compared with the new filter, the use of the old BAC filter facilitated a slightly lower rate of dissolved organic carbon (DOC) removal. In the case of the new BAC filter, we recorded general increases in the biomass and microbial diversity of the biofilm with a prolongation of operating time, with the biomass stabilizing after 7 months. For both new and old BAC filters, Proteobacteria and Acidobacteria were the dominant bacterial phyla. At the genus level, the microbial community gradually shifted over the course of operation from a predominance of Herminiimonas and Hydrogenophaga to one predominated by Bradyrhizbium, Bryobacter, Hyphomicrobium, and Pedomicrobium, with Bradyrhizobium being established as the most abundant genus in the old BAC filter. Regarding spatial distribution, we detected reductions in the biomass and number of operational taxonomic units with increasing biofilm depth, whereas there was a corresponding increase in microbial diversity. However, compared with the effects of time, the influence of depth on the composition of the biofilm microbial community was considerably smaller. Furthermore, co-occurrence network analysis revealed that the microbial community network of the new filter after 11 months of operation was the most tightly connected, although its modular coefficient was the lowest of those assessed. We speculate that the positive and negative interactions within the network may be attributable to symbiotic or competitive relationships among species. Moreover, there may have been a significant negative interaction between SWB02 and Acidovorax, plausibly associated with a competition for substrates.


Asunto(s)
Agua Potable , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Ozono/química , Contaminantes Químicos del Agua/análisis , Consorcios Microbianos , Purificación del Agua/métodos , Acidobacteria , Filtración/métodos , Agua Potable/análisis
15.
Sci Total Environ ; 914: 169911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185156

RESUMEN

Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.


Asunto(s)
Herbicidas , Microbiota , Oryza , Suelo/química , Herbicidas/análisis , Oryza/genética , ARN Ribosómico 16S/genética , Archaea/genética , Bacterias/genética , Acidobacteria/genética , Microbiología del Suelo
16.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200199

RESUMEN

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Asunto(s)
Gas Natural , Yacimiento de Petróleo y Gas , Bacterias/metabolismo , Proteobacteria , Firmicutes , Suelo/química , Acidobacteria , Minerales/metabolismo , Fósforo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Nitrógeno/análisis , Aminoácidos/metabolismo , Microbiología del Suelo
17.
Bioresour Technol ; 394: 130194, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086466

RESUMEN

Levels of cadmium (Cd) and lead (Pb) correspond to common composition in acid mine wastewater of Hunan Province of China. The removal path of Cd and Pb and the structure of microbial community were investigated by developing constructed wetlands (CWs) with different layer positions of biochar. The biochar as a layer at the bottom of CW (BCW) system exhibited maximum Cd and Pb removal efficiencies of 96.6-98.6% and 97.2-98.9%, respectively. Compared with original soil, BCW increased the relative proportions of Proteobacteria, Firmicutes, Acidobacteriota, Verrucomicrobiota, Desulfobacterota, Armatimonadota, Bacteroidota, Patescibacteria, Basidiomycota (phylum level) and Burkholderia-Caballeronia-Paraburkholderia, Citrifermentans, Chthonomonadales, Cellulomonas, Geothrix, Terracidiphilus, Gallionellaceae, Microbacterium, Vanrija, Apiotrichum, Saitozyma, Fusarium (genus level). The concentrations of Cd and Pb were positively correlated with the abundance of Verrucomicrobiota, Basidiomycota (phylum level), and Methylacidiphilaceae, Meyerozyma, Vanrija (genus level). This study demonstrates that BCW system can improve removal performance toward Cd and Pb, as well as alter microbial community.


Asunto(s)
Burkholderiaceae , Microbiota , Cadmio , Plomo , Humedales , Carbón Orgánico/química , Bacterias , Acidobacteria , Eliminación de Residuos Líquidos
18.
J Hazard Mater ; 465: 133118, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101017

RESUMEN

Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Oryza/química , Carbono/análisis , Bacterias , Acidobacteria , Proteobacteria , Grano Comestible/química , Fósforo/análisis , Nitrógeno/análisis , China , Contaminantes del Suelo/análisis
19.
Sci Rep ; 13(1): 22708, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38123614

RESUMEN

The rice-turtle coculture system is the most special rice-fish integrated farming system. In this study, we selected four paddy fields, including a rice monoculture paddy and three rice-turtle paddies with different planting years, to investigate the soil bacterial community composition with Illumina MiSeq sequencing technology. The results indicated that the contents of soil available nitrogen (AN), soil available phosphorus (AP) and soil organic matter (OM) in 9th year of rice-turtle paddy (RT9) were increased by 5.40%, 51.11% and 23.33% compared with rice monoculture paddy (CK), respectively. Significant differences of Acidobacteria, Desulfobacteria, Crenarchaeota were observed among the different rice farming systems. The relative abundance of Methylomonadaceae, Methylococcaceae and Methylophilaceae in RT9 was significantly higher than that in other treatments. RT9 had significantly lower relative abundance of Acidobacteria, but significantly higher relative abundance of Proteobacteria than other treatments. Redundancy analysis showed that soil AN and AP contents were the major factors influencing the abundance of the dominant microbes, wherein Methylomonadaceae, Methylococcaceae and Methylophilaceae were positively correlated with OM. The findings revealed the rice-turtle coculture system in the 9th year had higher soil nutrients and soil bacterial diversity, but there was also a risk of increasing methane emissions.


Asunto(s)
Methylococcaceae , Oryza , Tortugas , Animales , Suelo , Oryza/microbiología , Técnicas de Cocultivo , Microbiología del Suelo , Agricultura , Bacterias/genética , Acidobacteria/genética , Nitrógeno
20.
Huan Jing Ke Xue ; 44(11): 6339-6353, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973116

RESUMEN

The process of interaction between the plant and soil microbial communities holds the key to understanding the biogeochemical cycle and preserving the stability of vegetation ecosystems. Owing to this significance, the primary goal of this research was to give a starting point and reference methods to restore local vegetation. The vegetation distribution in the mountainous area of the upper reaches of the Heihe River Basin had notable vertical zonality, which was characterized by five typical vegetation types, including cushion vegetation(CV), herbage meadow(HM), forest steppe(FS), mountainous steppe(MS), and desert grassland(DG). The organization and diversity of soil bacterial communities in various vegetation types were examined using high-throughput sequencing techniques in both the winter and summer seasons. Sampling sites were chosen in each of the five common vegetation types in turn. Additionally, based on the FAPROTAX database, the predicted functions of microbial communities were evaluated for different vegetation types and seasons. The redundancy analysis and structural equation model were also used to investigate the primary environmental elements and uncover the mechanisms affecting the soil bacterial populations. The findings revealed that:① the physical and chemical properties of soil differed significantly among vegetation types and seasons, and the property indices varied dissimilarly with depth. In particular, the soil water content(SWC) and nutrient content of total organic carbon(TOC) and total nitrogen(TN) were significantly higher in forest grassland(FS). ② The divergences of α-diversity indices among seasons(P<0.05) were greater than that of vegetation types(P>0.05). The Chao1 index measuring the abundance of the bacterial community was higher in winter. According to the Shannon index, the species of the bacterial community were dispersed in a "W" shape in the summer and a "hump" form in the winter with altitude. ③ The predominant phyla of the bacterial community, composed of Acidobacteria, Proteobacteria, and Actinobacteria, did not significantly differ from one another. However, the organization of the bacterial community presented a significant variation seasonally at the genus level. ④ The primary functions of the soil bacterial population, which largely consisted of chemoheterotrophy, nitrification, and aerobic ammonia oxidation, were not significantly different among vegetation types and seasons. ⑤ The key factors affecting soil bacterial communities at the genus level varied significantly among seasons, with soil temperature(ST), total organic carbon(TOC), and pH in winter and soil water content(SWC), carbon-nitrogen ratio(C/N), and pH in summer. ⑥ Synergized by interrelated environmental factors, soil physical and chemical features exerted a more direct impact on the diversity and functionality of bacterial communities compared with vegetation types, including significantly changing the abundance of Acidobacteria and Bacteroidetes, as well as the role of nitrification and ammonia oxidation. Hence, improving the carbon and nitrogen contents in soil nutrients would help to enhance the diversity and function of bacterial communities. The findings of this study provided a model for determining the mechanism of regional vegetation degradation and preserving the stability of alpine ecosystems in this area by revealing the seasonal distribution pattern of bacterial communities and the key biological processes beneath the typical vertical vegetation band in the upper reaches of the Heihe River.


Asunto(s)
Microbiota , Suelo , Estaciones del Año , Suelo/química , Ríos , Microbiología del Suelo , Bacterias , Acidobacteria , Nitrógeno/análisis , Carbono/análisis , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA