Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(7): 2081-2090, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38607270

RESUMEN

Ectoine is a compatible solute that functions as a cell protector from various stresses, protecting cells and stabilizing biomolecules, and is widely used in medicine, cosmetics, and biotechnology. Microbial fermentation has been widely used for the large-scale production of ectoine, and a number of fermentation strategies have been developed to increase the ectoine yield, reduce production costs, and simplify the production process. Here, Corynebacterium glutamicum was engineered for ectoine production by heterologous expression of the ectoine biosynthesis operon ectBAC gene from Halomonas elongata, and a series of genetic modifications were implemented. This included introducing the de3 gene from Escherichia coli BL21 (DE3) to express the T7 promoter, eliminating the lysine transporter protein lysE to limit lysine production, and performing a targeted mutation lysCS301Y on aspartate kinase to alleviate feedback inhibition of lysine. The new engineered strain Ect10 obtained an ectoine titer of 115.87 g/L in an optimized fed-batch fermentation, representing the highest ectoine production level in C. glutamicum and achieving the efficient production of ectoine in a low-salt environment.


Asunto(s)
Aminoácidos Diaminos , Corynebacterium glutamicum , Escherichia coli , Fermentación , Halomonas , Ingeniería Metabólica , Aminoácidos Diaminos/biosíntesis , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ingeniería Metabólica/métodos , Halomonas/genética , Halomonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lisina/metabolismo , Lisina/biosíntesis , Regiones Promotoras Genéticas , Operón/genética , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Sistemas de Transporte de Aminoácidos Básicos
2.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569988

RESUMEN

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Asunto(s)
Aspartato Quinasa , Brugia Malayi , Simulación de Dinámica Molecular , Wolbachia , Brugia Malayi/enzimología , Brugia Malayi/microbiología , Regulación Alostérica , Animales , Aspartato Quinasa/metabolismo , Aspartato Quinasa/genética , Aspartato Quinasa/química , Simbiosis , Adenosina Trifosfato/metabolismo , Lisina/química , Lisina/metabolismo
3.
Appl Environ Microbiol ; 90(4): e0015524, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456673

RESUMEN

Humans and mammals need to ingest essential amino acids (EAAs) for protein synthesis. In addition to their importance as nutrients, EAAs are involved in brain homeostasis. However, elderly people are unable to efficiently consume EAAs from their daily diet due to reduced appetite and variations in the contents of EAAs in foods. On the other hand, strains of the yeast Saccharomyces cerevisiae that accumulate EAAs would enable elderly people to intakegest adequate amounts of EAAs and thus might slow down the neurodegenerative process, contributing to the extension of their healthy lifespan. In this study, we isolated a mutant (strain HNV-5) that accumulates threonine, an EAA, derived from a diploid laboratory yeast by conventional mutagenesis. Strain HNV-5 carries a novel mutation in the HOM3 gene encoding the Ala462Thr variant of aspartate kinase (AK). Enzymatic analysis revealed that the Ala462Thr substitution significantly decreased the sensitivity of AK activity to threonine feedback inhibition even in the presence of 50 mM threonine. Interestingly, Ala462Thr substitution did not affect the catalytic ability of Hom3, in contrast to previously reported amino acid substitutions that resulted in reduced sensitivity to threonine feedback inhibition. Furthermore, yeast cells expressing the Ala462Thr variant showed an approximately threefold increase in intracellular threonine content compared to that of the wild-type Hom3. These findings will be useful for the development of threonine-accumulating yeast strains that may improve the quality of life in elderly people.IMPORTANCEFor humans and mammals, essential amino acids (EAAs) play an important role in maintaining brain function. Therefore, increasing the intake of EAAs by using strains of the yeast Saccharomyces cerevisiae that accumulate EAAs may inhibit neurodegeneration in elderly people and thus contribute to extending healthy lifespan and improving their quality of life. Threonine, an EAA, is synthesized from aspartate. Aspartate kinase (AK) catalyzes the first step in threonine biosynthesis and is subject to allosteric regulation by threonine. Here, we isolated a threonine-accumulating mutant of S. cerevisiae by conventional mutagenesis and identified a mutant gene encoding a novel variant of AK. In contrast to previously isolated variants, the Hom3 variant exhibited AK activity that was insensitive to feedback inhibition by threonine but retained its catalytic ability. This resulted in increased production of threonine in yeast. These findings open up the possibility for the rational design of AK to increase threonine productivity in yeast.


Asunto(s)
Aspartato Quinasa , Saccharomyces cerevisiae , Humanos , Animales , Anciano , Saccharomyces cerevisiae/metabolismo , Treonina , Aspartato Quinasa/química , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Retroalimentación , Calidad de Vida , Mamíferos
4.
Bioprocess Biosyst Eng ; 45(3): 541-551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066675

RESUMEN

This study aimed to improve the catalytic activity of aspartate kinase (AK), the first key rate-limiting enzyme in the aspartic acid metabolism pathway, by site-directed saturation mutagenesis, and to weaken the synergistic feedback inhibition of metabolites and analyze its mechanism using molecular dynamics simulation (MD). The key residual sites around the inhibitor lysine (Lys) were selected to construct the mutant strains. The mutant A380M with significantly increased enzyme activity was obtained through enzyme activity screening. Kinetic analysis showed that the Vmax value increased to 15.73 U/mg, which was 4.8 times higher than that of wild-type AK (WT AK) (3.28 U/mg). The Kn value decreased to 0.61 mM, which was significantly lower than that of the wild type (4.77 mM), indicating that the substrate affinity increased. The enzyme properties analysis showed that the optimum temperature of the mutant A380M increased from 26 °C to 35 °C, the optimum pH remained unchanged. The stability was determined at optimum temperature (35 °C) and optimum pH 8.0, and it decreased from 4.8 h to 2.7 h. The feedback inhibition was weakened, showing a significant activation with the highest relative enzyme activity of 123.29% (Water was used instead of inhibitor as blank control group, and the highest enzyme activity was defined as 100%). Molecular dynamics simulations showed that the distance between ATP and Asp was shortened after mutation. The binding force and interaction between AK and ATP and substrate Asp were enhanced. The distance between catalytic residues D193 and S192 and substrate Asp was shortened.


Asunto(s)
Aspartato Quinasa , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Ácido Aspártico , Cinética , Mutagénesis , Mutagénesis Sitio-Dirigida
5.
Genetics ; 219(4)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849833

RESUMEN

Cdk8 of the RNA polymerase II mediator kinase complex regulates gene expression by phosphorylating sequence-specific transcription factors. This function is conserved amongst eukaryotes, but the signals and mechanisms regulating Cdk8 activity and phosphorylation of its substrates are unknown. Full induction of the GAL genes in yeast requires phosphorylation of the transcriptional activator Gal4 by Cdk8. We used a screen to identify regulators of the Cdk8-dependent phosphorylation on Gal4, from which we identified multiple mutants with defects in TORC1 signaling. One mutant, designated gal four throttle 1 (gft1) was identified as a recessive allele of hom3, encoding aspartokinase, and mutations in hom3 caused effects typical of inhibition of TORC1, including rapamycin sensitivity and enhanced nuclear localization of the TORC1-responsive transcription factor Gat1. Mutations in hom3 also inhibit phosphorylation of Gal4 in vivo at the Cdk8-dependent site on Gal4, as did mutations of tor1, but these mutations did not affect activity of Cdk8 assayed in vitro. Disruption of cdc55, encoding a regulatory subunit of the TORC1-regulated protein phosphatase PP2A, suppressed the effect of hom3 and tor1 mutations on GAL expression, and also restored phosphorylation of Gal4 at the Cdk8-dependent site in vivo. These observations demonstrate that TORC1 signaling regulates GAL induction through the activity of PP2A/Cdc55 and suggest that Cdk8-dependent phosphorylation of Gal4 is opposed by PP2A/Cdc55 dephosphorylation. These results provide insight into how induction of transcription by a specific inducer can be modulated by global nutritional signals through regulation of Cdk8-dependent phosphorylation.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aspartato Quinasa/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Fosforilación , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Plant Sci ; 313: 111068, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763861

RESUMEN

Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.


Asunto(s)
Aspartato Quinasa/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Populus/genética , Populus/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Aspartato Quinasa/genética , Dimerización , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Presión Osmótica , Transducción de Señal/fisiología , Técnicas del Sistema de Dos Híbridos
7.
Plant Biotechnol J ; 19(3): 490-501, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32945115

RESUMEN

Lysine is the main limiting essential amino acid (EAA) in the rice seeds, which is a major energy and nutrition source for humans and livestock. In higher plants, the rate-limiting steps in lysine biosynthesis pathway are catalysed by two key enzymes, aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS), and both are extremely sensitive to feedback inhibition by lysine. In this study, two rice AK mutants (AK1 and AK2) and five DHDPS mutants (DHDPS1-DHDPS5), all single amino acid substitution, were constructed. Their protein sequences passed an allergic sequence-based homology alignment. Mutant proteins were recombinantly expressed in Escherichia coli, and all were insensitive to the lysine analog S-(2-aminoethyl)-l-cysteine (AEC) at concentrations up to 12 mm. The AK and DHDPS mutants were transformed into rice, and free lysine was elevated in mature seeds of transgenic plants, especially those expressing AK2 or DHDPS1, 6.6-fold and 21.7-fold higher than the wild-type (WT) rice, respectively. We then engineered 35A2D1L plants by simultaneously expressing modified AK2 and DHDPS1, and inhibiting rice LKR/SDH (lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase). Free lysine levels in two 35A2D1L transgenic lines were 58.5-fold and 39.2-fold higher than in WT and transgenic rice containing native AK and DHDPS, respectively. Total free amino acid and total protein content were also elevated in 35A2D1L transgenic rice. Additionally, agronomic performance analysis indicated that transgenic lines exhibited normal plant growth, development and seed appearance comparable to WT plants. Thus, AK and DHDPS mutants may be used to improve the nutritional quality of rice and other cereal grains.


Asunto(s)
Aspartato Quinasa , Oryza , Aspartato Quinasa/genética , Biofortificación , Retroalimentación , Hidroliasas , Lisina , Oryza/genética
8.
FEBS J ; 288(7): 2377-2397, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33067840

RESUMEN

The stringent response, regulated by the bifunctional (p)ppGpp synthetase/hydrolase Rel in mycobacteria, is critical for long-term survival of the drug-tolerant dormant state of Mycobacterium tuberculosis. During amino acid starvation, MtRel senses a drop in amino acid concentration and synthesizes the messengers pppGpp and ppGpp, collectively called (p)ppGpp. Here, we investigate the role of the regulatory 'Aspartokinase, Chorismate mutase and TyrA' (ACT) domain in MtRel. Using NMR spectroscopy approaches, we report the high-resolution structure of dimeric MtRel ACT which selectively binds to valine out of all other branched-chain amino acids tested. A set of MtRel ACT mutants were generated to identify the residues required for maintaining the head-to-tail dimer. Through NMR titrations, we determined the crucial residues for binding of valine and show structural rearrangement of the MtRel ACT dimer in the presence of valine. This study suggests the direct involvement of amino acids in (p)ppGpp accumulation mediated by MtRel independent to interactions with stalled ribosomes. Database Structural data are available in the PDB database under the accession number 6LXG.


Asunto(s)
Aspartato Quinasa/genética , Corismato Mutasa/genética , Ligasas/genética , Mycobacterium tuberculosis/genética , Aspartato Quinasa/química , Aspartato Quinasa/ultraestructura , Corismato Mutasa/química , Corismato Mutasa/ultraestructura , Guanosina Tetrafosfato/genética , Hidrolasas/genética , Ligasas/química , Ligasas/ultraestructura , Espectroscopía de Resonancia Magnética , Mycobacterium tuberculosis/patogenicidad , Dominios Proteicos/genética , Multimerización de Proteína , Factores de Transcripción/genética
9.
Biotechnol Bioeng ; 116(11): 3016-3029, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317533

RESUMEN

CRISPR/Cas9-guided cytidine deaminase enables C:G to T:A base editing in bacterial genome without introduction of lethal double-stranded DNA break, supplement of foreign DNA template, or dependence on inefficient homologous recombination. However, limited by genome-targeting scope, editing window, and base transition capability, the application of base editing in metabolic engineering has not been explored. Herein, four Cas9 variants accepting different protospacer adjacent motif (PAM) sequences were used to increase the genome-targeting scope of bacterial base editing. After a comprehensive evaluation, we demonstrated that PAM requirement of bacterial base editing can be relaxed from NGG to NG using the Cas9 variants, providing 3.9-fold more target loci for gene inactivation in Corynebacterium glutamicum. Truncated or extended guide RNAs were employed to expand the canonical 5-bp editing window to 7-bp. Bacterial adenine base editing was also achieved with Cas9 fused to adenosine deaminase. With these updates, base editing can serve as an enabling tool for fast metabolic engineering. To demonstrate its potential, base editing was used to deregulate feedback inhibition of aspartokinase via amino acid substitution for lysine overproduction. Finally, a user-friendly online tool named gBIG was provided for designing guide RNAs for base editing-mediated inactivation of given genes in any given sequenced genome (www.ibiodesign.net/gBIG).


Asunto(s)
Aspartato Quinasa , Proteínas Bacterianas , Sistemas CRISPR-Cas , Corynebacterium glutamicum , Edición Génica , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética
10.
Molecules ; 23(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572676

RESUMEN

In this study, a novel monomer aspartokinase (AK) from Corynebacterium pekinense was identified, and its monomer model was constructed. Site 380 was identified by homologous sequencing and monomer model comparison as the key site which was conserved and located around the binding site of the inhibitor Lys. Furthermore, the mutant A380I with enzyme activity 11.32-fold higher than wild type AK (WT-AK), was obtained by site-directed mutagenesis and high throughput screening. In the mutant A380I, the optimal temperature was raised from 26 °C (WT-AK) to 28 °C, the optimal pH remained unchanged at 8.0, and the half-life was prolonged from 4.5 h (WT-AK) to 6.0 h, indicating enhanced thermal stability. The inhibition of A380I was weakened at various inhibitor concentrations and even activated at certain inhibitor concentrations (10 mM of Lys, 5 mM or 10 mM of Lys + Thr, 10 mM of Lys + Met, 5 mM of Lys + Thr + Met). Molecular dynamics simulation results indicated that the occupancy rate of hydrogen bond between A380I and ATP was enhanced, the effect of Lys (inhibitor) on the protein was weakened, and the angle between Ser281-Tyre358 and Asp359-Gly427 was increased after mutation, leading to an open conformation (R-state) that favored the binding of substrate.


Asunto(s)
Aspartato Quinasa/metabolismo , Corynebacterium/enzimología , Aspartato Quinasa/genética , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica , Temperatura
11.
PLoS One ; 13(2): e0193036, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29462203

RESUMEN

An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Malatos/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Sustitución de Aminoácidos , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Dominio Catalítico/genética , Evolución Molecular Dirigida , Biblioteca de Genes , Variación Genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfotransferasas/aislamiento & purificación , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Electricidad Estática , Especificidad por Sustrato
12.
Biochem J ; 475(6): 1107-1119, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29382741

RESUMEN

In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2ß2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2ß2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.


Asunto(s)
Aspartato Quinasa/química , Aspartato Quinasa/metabolismo , Pseudomonas aeruginosa/enzimología , Regulación Alostérica/genética , Sitio Alostérico/genética , Secuencia de Aminoácidos , Aspartato Quinasa/genética , Catálisis , Modelos Moleculares , Organismos Modificados Genéticamente , Dominios y Motivos de Interacción de Proteínas/genética , Pseudomonas aeruginosa/genética , Alineación de Secuencia
13.
Sci Rep ; 7(1): 15145, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123248

RESUMEN

Cells are capable of rapid replication and performing tasks adaptively and ultra-sensitively and can be considered as cheap "biological-robots". Here we propose to engineer cells for screening biomolecules in parallel and with high sensitivity. Specifically, we place the biomolecule variants (library) on the bacterial phage M13. We then design cells to screen the library based on cell-phage interactions mediated by a specific intracellular signal change caused by the biomolecule of interest. For proof of concept, we used intracellular lysine concentration in E. coli as a signal to successfully screen variants of functional aspartate kinase III (AK-III) under in vivo conditions, a key enzyme in L-lysine biosynthesis which is strictly inhibited by L-lysine. Comparative studies with flow cytometry method failed to distinguish the wild-type from lysine resistance variants of AK-III, confirming a higher sensitivity of the method. It opens up a new and effective way of in vivo high-throughput screening for functional molecules and can be easily implemented at low costs.


Asunto(s)
Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Bacteriófago M13/crecimiento & desarrollo , Escherichia coli/virología , Lisina/metabolismo , Pruebas Genéticas/métodos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Sensibilidad y Especificidad
14.
Metab Eng ; 44: 273-283, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29111438

RESUMEN

L-lysine and other amino acids are commonly produced through fermentation using strains of heterotrophic bacteria such as Corynebacterium glutamicum. Given the large amount of sugar this process consumes, direct photosynthetic production is intriguing alternative. In this study, we report the development of a cyanobacterium, Synechococcus sp. strain PCC 7002, capable of producing L-lysine with CO2 as the sole carbon-source. We found that heterologous expression of a lysine transporter was required to excrete lysine and avoid intracellular accumulation that correlated with poor fitness. Simultaneous expression of a feedback inhibition resistant aspartate kinase and lysine transporter were sufficient for high productivities, but this was also met with a decreased chlorophyll content and reduced growth rates. Increasing the reductant supply by using NH4+, a more reduced nitrogen source relative to NO3-, resulted in a two-fold increase in productivity directing 18% of fixed carbon to lysine. Given this advantage, we demonstrated lysine production from media formulated with a municipal wastewater treatment sidestream as a nutrient source for increased economic and environmental sustainability. Based on our results, we project that Synechococcus sp. strain PCC 7002 could produce lysine at areal productivities approaching that of sugar cane to lysine via fermentation using non-agricultural lands and low-cost feedstocks.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Aspartato Quinasa , Proteínas Bacterianas , Corynebacterium glutamicum/genética , Fotosíntesis , Synechococcus , Sistemas de Transporte de Aminoácidos/biosíntesis , Sistemas de Transporte de Aminoácidos/genética , Aspartato Quinasa/biosíntesis , Aspartato Quinasa/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Corynebacterium glutamicum/metabolismo , Lisina , Synechococcus/genética , Synechococcus/metabolismo
15.
Methods Mol Biol ; 1512: 9-18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27885594

RESUMEN

The recovery of Campylobacter species from food and environmental sources is challenging due to the slow growth of these bacteria and the need to suppress competing organisms during the isolation procedures. The addition of multiple selective antimicrobials to growth media can negatively impact recovery of some Campylobacter spp. Here, we describe our current method for the isolation of thermotolerant Campylobacter species, mainly C. jejuni and C. coli, from food and environmental samples. We emphasize the use of membrane filtration during plating for the specific isolation of Campylobacter spp. and a reduced use of antimicrobial supplements throughout the whole isolation process.


Asunto(s)
Proteínas Bacterianas/genética , Microbiología de Alimentos , Carne/microbiología , Leche/microbiología , Microbiología del Agua , Adaptación Fisiológica , Amidohidrolasas/genética , Animales , Aspartato Quinasa/genética , Campylobacter coli , Campylobacter jejuni , Pollos , Recuento de Colonia Microbiana , Medios de Cultivo/química , Cartilla de ADN/síntesis química , Cartilla de ADN/metabolismo , Filtración/métodos , Expresión Génica , Calor , Reacción en Cadena de la Polimerasa Multiplex , Peptonas/química , ARN Ribosómico 16S/genética
16.
Enzyme Microb Technol ; 87-88: 79-85, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27178798

RESUMEN

4-hydroxyisoleucine (4-HIL) exhibits unique insulinotropic and insulin-sensitizing activities and is an attractive candidate for the treatment of type II and type I diabetes. In our previous study, l-isoleucine dioxygenase gene (ido) was cloned and overexpressed in an l-isoleucine-producing strain, Corynebacterium glutamicum ssp. lactofermentum SN01, and 4-HIL was produced from the endogenous l-isoleucine (Ile). In this study, ppc and lysC were co-expressed with ido to increase the supply of Ile, the direct precursor of 4-HIL, and to further improve the 4-HIL yield. After 144h of fermentation, the ido-ppc-expressing strain produced 95.72±1.52mM 4-HIL, 29% higher than the ido-expressing strain. The co-expression of lysC and ppc with ido resulted in a further 35% increment of carbon flux to l-aspartate family amino acids biosynthesis pathway. However, the conversion ratio of Ile to 4-HIL and the 4-HIL yield decreased to 0.31mol/mol and 30.16±2.01mM, respectively, likely due to the decreased IDO activity caused by lower pH and higher intracellular Ile concentration. Therefore, co-expression of ido and ppc was benefit for 4-HIL de novo biosynthesis, while co-expression of lysC with ido and ppc decreased the conversion ratio of Ile to 4-HIL.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Isoleucina/análogos & derivados , Isoleucina/biosíntesis , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Ciclo del Carbono , Dioxigenasas/genética , Dioxigenasas/metabolismo , Fermentación , Genes Bacterianos , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulación hacia Arriba
17.
Extremophiles ; 20(3): 275-82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26936147

RESUMEN

TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-ß-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four ß-strands and two α-helices in a ßαßßαß motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.


Asunto(s)
Aspartato Quinasa/química , Proteínas Bacterianas/química , Corismato Mutasa/química , Cistationina betasintasa/química , Thermus thermophilus/genética , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Dominios Proteicos , Thermus thermophilus/enzimología
18.
Int J Mol Sci ; 16(12): 28270-84, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26633359

RESUMEN

Aspartate kinase (AK) is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni(2+). Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production.


Asunto(s)
Aspartato Quinasa/química , Dominio Catalítico , Corynebacterium/enzimología , Modelos Moleculares , Conformación Proteica , Secuencia de Aminoácidos , Aspartato Quinasa/antagonistas & inhibidores , Aspartato Quinasa/genética , Sitios de Unión , Corynebacterium/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Datos de Secuencia Molecular , Mutación , Proteínas Recombinantes , Alineación de Secuencia , Solventes , Termodinámica
19.
Plant Physiol ; 168(4): 1512-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063505

RESUMEN

Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids.


Asunto(s)
Aminoácidos/genética , Proteínas de Arabidopsis/genética , Aspartato Quinasa/genética , Ácido Aspártico/genética , Aspartoquinasa Homoserina Deshidrogenasa/genética , Mutación , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Aspartato Quinasa/metabolismo , Ácido Aspártico/metabolismo , Aspartoquinasa Homoserina Deshidrogenasa/metabolismo , Cromatografía Líquida de Alta Presión , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Lisina/genética , Lisina/metabolismo , Metionina/genética , Metionina/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Treonina/genética , Treonina/metabolismo
20.
Appl Microbiol Biotechnol ; 99(20): 8527-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25935345

RESUMEN

Aspartate kinase (AK) is a key enzyme involved in catalyzing the first step of the aspartate-derived amino acid biosynthesis, including L-lysine and L-threonine, which is regulated by the end-metabolites through feedback inhibition. In order to accumulate the end-metabolites in the host, the feedback inhibition of AK has to be released. In this study, a chimeric aspartate kinase, which is composed of the N-terminal catalytic region from Bacillus subtilis AKII and the C-terminal region from Thermus thermophilus, was evolved through random mutagenesis and then screened using a high-throughput synthetic RNA device which comprises of an L-lysine-sensing riboswitch and a selection module. Of three evolved aspartate kinases, the best mutant BT3 showed 160 % increased in vitro activity compared to the wild-type enzyme. Recombinant Escherichia coli harboring BT3 produced 674 mg/L L-lysine in batch cultivation, similar to that produced by the strain harboring the typical commercial widely used feedback resistant aspartate kinase AKC (fbr) from E. coli. The results suggested that this strategy can be extended for screening of other key enzymes involved in lysine biosynthesis pathways.


Asunto(s)
Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Bacillus subtilis/enzimología , Lisina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Thermus thermophilus/enzimología , Bacillus subtilis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Pruebas Genéticas/métodos , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA