Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.134
Filtrar
1.
Pathol Res Pract ; 260: 155443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981348

RESUMEN

Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.


Asunto(s)
Glioblastoma , Proteasas Ubiquitina-Específicas , Humanos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/enzimología , Glioblastoma/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Terapia Molecular Dirigida/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Antineoplásicos/uso terapéutico , Animales , Inhibidores de Proteasoma/uso terapéutico , Inhibidores de Proteasoma/farmacología
2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999983

RESUMEN

The synthesis, biochemical evaluation and radiosynthesis of a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor and radioligand was performed. NT431, a newly synthesized 4-fluorobenzyl-abemaciclib, exhibited high potency to CDK4/6 and against four cancer cell lines with IC50 similar to that of the parent abemaciclib. We performed a two-step one-pot radiosynthesis to produce [18F]NT431 with good radiochemical yield (9.6 ± 3%, n = 3, decay uncorrected), high radiochemical purity (>95%), and high molar activity (>370 GBq/µmol (>10.0 Ci/µmol). In vitro autoradiography confirmed the specific binding of [18F]NT431 to CDK4/6 in brain tissues. Dynamic PET imaging supports that both [18F]NT431 and the parent abemaciclib crossed the BBB albeit with modest brain uptake. Therefore, we conclude that it is unlikely that NT431 or abemaciclib (FDA approved drug) can accumulate in the brain in sufficient concentrations to be potentially effective against breast cancer brain metastases or brain cancers. However, despite the modest BBB penetration, [18F]NT431 represents an important step towards the development and evaluation of a new generation of CDK4/6 inhibitors with superior BBB penetration for the treatment and visualization of CDK4/6 positive tumors in the CNS. Also, [18F]NT431 may have potential application in peripheral tumors such as breast cancer and other CDK4/6 positive tumors.


Asunto(s)
Aminopiridinas , Bencimidazoles , Neoplasias Encefálicas , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Tomografía de Emisión de Positrones/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/enzimología , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Línea Celular Tumoral , Bencimidazoles/farmacología , Bencimidazoles/química , Aminopiridinas/química , Aminopiridinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Animales , Radiofármacos/química , Radioisótopos de Flúor/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ratones , Femenino
3.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38717250

RESUMEN

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos , Glioblastoma , Esferoides Celulares , Temozolomida , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/enzimología , Temozolomida/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/enzimología , Antineoplásicos Alquilantes/farmacología
4.
Diagn Pathol ; 19(1): 70, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796421

RESUMEN

IDH1 and IDH2 mutational status is a critical biomarker with diagnostic, prognostic, and treatment implications in glioma. Although IDH1 p.R132H-specific immunohistochemistry is available, it is unable to identify other mutations in IDH1/2. Next-generation sequencing can accurately determine IDH1/2 mutational status but suffers from long turnaround time when urgent treatment planning and initiation is medically necessary. The Idylla assay can detect IDH1/2 mutational status from unstained formalin-fixed paraffin-embedded (FFPE) slides in as little as a few hours. In a clinical validation, we demonstrate clinical accuracy of 97% compared to next-generation sequencing. Sensitivity studies demonstrated a limit of detection of 2.5-5% variant allele frequency, even at DNA inputs below the manufacturer's recommended threshold. Overall, the assay is an effective and accurate method for rapid determination of IDH1/2 mutational status.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/enzimología , Análisis Mutacional de ADN/métodos , Adhesión en Parafina , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Formaldehído , Fijación del Tejido/métodos , Reproducibilidad de los Resultados
5.
Metab Brain Dis ; 39(5): 719-729, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38687460

RESUMEN

BACKGROUND: Glioma is the main subtype of primary central nervous system (CNS) tumor with high malignancy and poor prognosis under current therapeutic approaches. Glycolysis and suppressive tumor microenvironment (TME) are key markers of glioma with great importance for aggressive features of glioma and inferior clinical outcomes. Hexokinase 3 (HK3) is an important rate-limiting enzyme in glycolysis, but its function in glioma remains unknown. METHODS: This study comprehensively assessed the expression distribution and immunological effect of HK3 via pan-cancer analysis based on datasets from Genotype Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Furthermore, it explored the malignant phenotype and genomic landscape between low-HK3 and high-HK3 expression groups in gliomas from Chinese Glioma Genome Atlas (CGGA) and TCGA. Moreover, data from the TIMER website predicted the relationship between macrophage infiltration and HK3 expression. Also, single-cell sequencing data were used to validate the relationship. RESULTS: For pan-cancer patients, HK3 was expressed in various cancers. The results showed that HK3 was highly expressed in gliomas and positively correlated with tumor-infiltrating immune cells (TIICs), immune checkpoints, immunomodulators, and chemokines. Meanwhile, HK3 expression was highest in normal immune cells and tissues. In gliomas, the expression of HK3 was found to be closely correlated with the malignant clinical characteristics and the infiltration of macrophages. Also, HK3 was proven to be positively associated with macrophage through single-cell sequencing data and immunohistochemistry techniques. Finally, it is predicted that samples with high HK3 expression are often malignant entities and also significant genomic aberrations of driver oncogenes. CONCLUSIONS: This is the first comprehensive research to figure out the relationship between HK3 and TME characteristics in gliomas. HK3 is positively associated with macrophage infiltration and can induce the immunosuppressive TME and malignant phenotype of gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Hexoquinasa , Microambiente Tumoral , Humanos , Glioma/patología , Glioma/genética , Glioma/inmunología , Glioma/enzimología , Hexoquinasa/metabolismo , Hexoquinasa/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Regulación Neoplásica de la Expresión Génica
6.
EMBO Mol Med ; 14(12): e15343, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36278433

RESUMEN

Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Lactato Deshidrogenasas , Animales , Ratones , Ácido Láctico , Metabolómica , Glioblastoma/enzimología , Glioblastoma/patología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología
7.
Brain Tumor Pathol ; 39(3): 162-170, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35362874

RESUMEN

The aim of this study was to analyze the clinical and radiological characteristics of glioblastomas (GBMs) harboring a BRAF mutation. Sequencing analysis of BRAF, IDH1/2, and TERT promoters was performed on GBM samples of patients older than 15 years. The clinical, pathological, and radiological data of patients were retrospectively reviewed. Patients were classified into three groups according to their BRAF and IDH1/2 status: BRAF group, IDH group, and BRAF/IDH-wild-type (WT) group. Among 179 GBM cases, we identified nine cases with a BRAF mutation and nine with IDH mutation. The WT group had 161 cases. Age at onset in the BRAF group was significantly lower compared to the WT group and was similar to the IDH group. In cases with negative IDH1-R132H staining and age < 55 years, 15.2% were BRAF-mutant cases. Similar to the IDH group, overall survival of the BRAF group was significantly longer compared with the WT group. Among nine cases in the BRAF group, three cases had hemorrhagic onset and prior lesions were observed in two cases. In conclusion, age < 55 years, being IDH1-R132H negative, with hemorrhagic onset or the presence of prior lesions are factors that signal recommendation of BRAF analysis for adult GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteínas Proto-Oncogénicas B-raf , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico por imagen , Glioblastoma/enzimología , Glioblastoma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Persona de Mediana Edad , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Estudios Retrospectivos
8.
Neurol India ; 70(1): 215-222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35263886

RESUMEN

Background: Liquid biopsies have emerged as convenient alternative diagnostic methods to invasive biopsies, by evaluating disease-specific biomarkers and monitoring the disease risk noninvasively. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) is a potent tumor suppressor, and its deletion/mutations are common in gliomas. Objective: Evaluate the feasibility of non-invasive detection of PTEN and its downstream genes in serum exosomes of glioma patients. Materials and methods: PTEN, Yes-associated-protein 1 (YAP1), and lysyl oxidase (LOX) transcript expression were monitored through polymerase chain reaction (PCR) in serum exosomes and their paired tumor tissues. The impact of PTEN and its axis genes expression on the overall survival (OS) was monitored. Results: Out of the 106 glioma serum samples evaluated, PTEN was retained/lost in 65.4%/34.6% of the tumor samples while it was retained/lost in 67.1%/32.9% of their paired exosomal fractions. PTEN expression in both tissue and paired exosomal fractions was observed in 48.11% of the samples. Sanger sequencing detected three mutations (Chr10: 89720791(A>G), Chr10:89720749(C>T), and Chr10:89720850(A>G). Both PTEN-responsive downstream genes (YAP1) and LOX axis were upregulated in the PTEN-deficient samples. PTEN loss was associated with poor survival in the glioma patients (hazard ratio (HR) 0.68, confidence interval (CI): 0.35-1.31, P = 0.28). The OS of the exosomal PTEN cohort coincided with the tumor-tissue PTEN devoid group (HR 1.08, CI: 0.49-2.36, P = 0.85). While, old age yielded the worst prognosis; gender, location, and grade were not prognostic of OS in the multivariate analysis. Conclusions: PTEN and its responsive genes YAP1 and LOX can be detected in serum exosomes and can serve as essential tools for the non-invasive evaluation/identification of aggressive gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Fosfohidrolasa PTEN , Biomarcadores de Tumor , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico , Glioma/enzimología , Glioma/genética , Glioma/patología , Humanos , Mutación , Fosfohidrolasa PTEN/genética , Pronóstico
9.
J Biol Chem ; 298(3): 101703, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148992

RESUMEN

Ferroptosis is an iron-dependent mode of cell death caused by excessive oxidative damage to lipids. Lipid peroxidation is normally suppressed by glutathione peroxidase 4, which requires reduced glutathione. Cystine is a major resource for glutathione synthesis, especially in cancer cells. Therefore, cystine deprivation or inhibition of cystine uptake promotes ferroptosis in cancer cells. However, the roles of other molecules involved in cysteine deprivation-induced ferroptosis are unexplored. We report here that the expression of gamma-glutamyltransferase 1 (GGT1), an enzyme that cleaves extracellular glutathione, determines the sensitivity of glioblastoma cells to cystine deprivation-induced ferroptosis at high cell density (HD). In glioblastoma cells expressing GGT1, pharmacological inhibition or deletion of GGT1 suppressed the cell density-induced increase in intracellular glutathione levels and cell viability under cystine deprivation, which were restored by the addition of cysteinylglycine, the GGT product of glutathione cleavage. On the other hand, cystine deprivation induced glutathione depletion and ferroptosis in GGT1-deficient glioblastoma cells even at an HD. Exogenous expression of GGT1 in GGT1-deficient glioblastoma cells inhibited cystine deprivation-induced glutathione depletion and ferroptosis at an HD. This suggests that GGT1 plays an important role in glioblastoma cell survival under cystine-limited and HD conditions. We conclude that combining GGT inhibitors with ferroptosis inducers may provide an effective therapeutic approach for treating glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Cistina , Ferroptosis , Glioblastoma , gamma-Glutamiltransferasa , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Cistina/deficiencia , Cistina/metabolismo , Glioblastoma/enzimología , Glioblastoma/genética , Glioblastoma/metabolismo , Glutatión/metabolismo , Humanos , gamma-Glutamiltransferasa/biosíntesis , gamma-Glutamiltransferasa/genética
10.
Sci Rep ; 12(1): 3200, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217778

RESUMEN

Alterations in the expression of the Duchenne muscular dystrophy (DMD) gene have been associated with the development, progression and survival outcomes of numerous cancers including tumours of the central nervous system. We undertook a detailed bioinformatic analysis of low-grade glioma (LGG) bulk RNAseq data to characterise the association between DMD expression and LGG survival outcomes. High DMD expression was significantly associated with poor survival in LGG with a difference in median overall survival between high and low DMD groups of over 7 years (P = < 0.0001). In a multivariate model, DMD expression remained significant (P = 0.02) and was an independent prognostic marker for LGG. The effect of DMD expression on overall survival was only apparent in isocitrate dehydrogenase (IDH) mutant cases where non-1p/19q co-deleted LGG patients could be further stratified into high/low DMD groups. Patients in the high DMD group had a median overall survival time almost halve that of the low DMD group. The expression of the individual DMD gene products Dp71, Dp71ab and Dp427m were also significantly associated with overall survival in LGG which have differential biological effects relevant to the pathogenesis of LGG. Differential gene expression and pathway analysis identifies dysregulated biological processes relating to ribosome biogenesis, synaptic signalling, neurodevelopment, morphogenesis and immune pathways. Genes spanning almost the entirety of chromosome 1p are upregulated in patients with high overall DMD, Dp71 and Dp427m expression which worsens survival outcomes for these patients. We confirmed dystrophin protein is variably expressed in LGG tumour tissue by immunohistochemistry and, overall, demonstrate that DMD expression has potential utility as an independent prognostic marker which can further stratify IDH mutant LGG to identify those at risk of poor survival. This knowledge may improve risk stratification and management of LGG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Distrofia Muscular de Duchenne , Biomarcadores/metabolismo , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Expresión Génica , Glioma/enzimología , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Distrofia Muscular de Duchenne/enzimología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mutación , Clasificación del Tumor , Pronóstico
11.
Anal Bioanal Chem ; 414(5): 1797-1807, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34984507

RESUMEN

Three disposable stochastic sensors designed using nanolayer deposition of copper (Cu), graphene (GR), and copper-graphene (Cu-GR) composite on the silk textile, as substrate, were modified with chitosan (n=371-744), for biomedical analysis. Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) served as model analytes for molecular recognition and quantification in biological samples such as whole blood and brain tumor tissue samples. The best sensitivities (3.77×107s µg mL-1 for IDH1, and 1.88×107s µg mL-1 for IDH2) and the lowest limits of quantification (10-2fg mL-1 for IDH1, and 5×10-2fg mL-1 for IDH2) for both IDH1 and IDH2 were recorded for the disposable stochastic sensors based on chitosan/graphene nanolayer. Very good correlations between the screening method based on disposable stochastic sensors and enzyme-linked immunosorbent assay (ELISA) were obtained; this was also proved by the results obtained using the paired t-test.


Asunto(s)
Cobre/química , Grafito/química , Isocitrato Deshidrogenasa/análisis , Isoenzimas/análisis , Seda/química , Neoplasias Encefálicas/enzimología , Ensayo de Inmunoadsorción Enzimática , Humanos , Isocitrato Deshidrogenasa/sangre , Límite de Detección , Microscopía Electrónica de Rastreo , Procesos Estocásticos
12.
J Pathol ; 256(3): 297-309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767259

RESUMEN

Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co-occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT-immortalized (i.e. p53- and RB-deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild-type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP-seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC-knockout cells expressing mutant IDH1-R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH-mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Astrocitos/enzimología , Epigenoma , Epigenómica , Perfilación de la Expresión Génica , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas Represoras/genética , Transcriptoma , Astrocitos/patología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Transformada , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Metilación de ADN , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Isocitrato Deshidrogenasa/metabolismo , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Oligodendroglioma/enzimología , Oligodendroglioma/genética , Oligodendroglioma/patología , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Represoras/deficiencia
13.
Elife ; 102021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34931988

RESUMEN

Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology. Optimal FAP sensor variants were identified by screening a series of prototypes for responsiveness in a cell-based bioassay. The best variant was then applied for quantitative neuroimaging of FAP activity in rats, where it reveals nanomolar-scale FAP expression by xenografted cells. The activated probe also induces robust hemodynamic contrast in nonhuman primate brain. This work thus demonstrates a potentially translatable strategy for ultrasensitive functional imaging of molecular targets in neuromedicine.


Asunto(s)
Neoplasias Encefálicas/enzimología , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Imagen Molecular , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Saimiri
14.
Cells ; 10(11)2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34831136

RESUMEN

PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.


Asunto(s)
Neoplasias Encefálicas/enzimología , Fosfofructoquinasa-2/metabolismo , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/inmunología , Carcinogénesis/patología , Humanos , Inmunomodulación , Neovascularización Patológica/enzimología , Hipoxia Tumoral
15.
Anal Cell Pathol (Amst) ; 2021: 4907167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745848

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase that encrypts a member of the Polycomb group (PcG) family. EZH2 forms a repressive chromatin structure which eventually participates in regulating the development as well as lineage propagation of stem cells and glioma progression. Posttranslational modifications are distinct approaches for the adjusted modification of EZH2 in the development of cancer. The amino acid succession of EZH2 protein makes it appropriate for covalent modifications, like phosphorylation, acetylation, O-GlcNAcylation, methylation, ubiquitination, and sumoylation. The glioma microenvironment is a dynamic component that comprises, besides glioma cells and glioma stem cells, a complex network that comprises diverse cell types like endothelial cells, astrocytes, and microglia as well as stromal components, soluble factors, and the extracellular membrane. EZH2 is well recognized as an essential modulator of cell invasion as well as metastasis in glioma. EZH2 oversecretion was implicated in the malfunction of several fundamental signaling pathways like Wnt/ß-catenin signaling, Ras and NF-κB signaling, PI3K/AKT signaling, ß-adrenergic receptor signaling, and bone morphogenetic protein as well as NOTCH signaling pathways. EZH2 was more secreted in glioblastoma multiforme than in low-grade gliomas as well as extremely secreted in U251 and U87 human glioma cells. Thus, the blockade of EZH2 expression in glioma could be of therapeutic value for patients with glioma. The suppression of EZH2 gene secretion was capable of reversing temozolomide resistance in patients with glioma. EZH2 is a promising therapeutic as well as prognostic biomarker for the treatment of glioma.


Asunto(s)
Neoplasias Encefálicas/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glioma/patología , Microambiente Tumoral/fisiología , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/enzimología , Glioma/enzimología , Humanos
17.
Life Sci Alliance ; 4(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34645618

RESUMEN

Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A "functional proteomics" screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/mortalidad , Glioblastoma/enzimología , Glioblastoma/mortalidad , Proteoma/metabolismo , Transducción de Señal , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Cocultivo/métodos , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/enzimología , Proteómica/métodos , Factores de Transcripción SOXB1/metabolismo , Tasa de Supervivencia
18.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34433651

RESUMEN

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Asunto(s)
Neoplasias Encefálicas/genética , ADN-Topoisomerasas de Tipo II/fisiología , Epigénesis Genética/fisiología , Glioma/genética , Intrones/fisiología , Oncogenes/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Neoplasias Encefálicas/enzimología , Regulación Neoplásica de la Expresión Génica , Glioma/enzimología , Humanos , Ratones
19.
Eur J Cancer ; 156: 149-163, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454317

RESUMEN

BACKGROUND: Melanoma brain metastases (MBM) have a poor prognosis. Systemic treatments that have improved outcomes in advanced melanoma have been shown to have an intracranial (IC) effect. We studied the efficacy and outcomes of combined immune checkpoint inhibitor ipilimumab/nivolumab (Combi-ICI) or targeted therapy (Combi-TT) as first-line treatment in MBM. METHODS: MBM patients treated with Combi-ICI or Combi-TT within 3 months after MBM diagnosis. Endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: 53 patients received Combi-ICI, 32% had symptomatic MBM and 33.9% elevated LDH. 71.7% required local treatment. The disease control rate was 60.3%. IC response rate (RR) was 43.8% at 3-months with durable responses at 6- (46.5%) and 12-months (53.1%). Extracranial (EC) RR was 44.7% at 3-months and 50% at 12-months. Median PFS was 9.6 months (95% CI 3.6-NR) and median overall survival (mOS) 44.8 months (95% CI; 26.2-NR). 63 patients received Combi-TT, 55.6% of patients had symptomatic MBM, 57.2% of patients had elevated LDH and 68.3% of patients required local treatment. The disease control rate was 60.4%. ICRR was 50% at 3-months, but dropped at 6-months (20.9%). ECRR was 69.2% at 3-months and 17.6% at 12-months. Median PFS was 5.8 months (95% CI 4.2-7.6) and mOS 14.2 months (95% CI 8.99-26.8). In BRAFV600 patients, 26.7% of patients received Combi-ICI and 73.3% Combi-TT with OS (p = 0.0053) and mPFS (p = 0.03) in favour to Combi-ICI. CONCLUSION: Combi-ICI showed prolonged mOS with sustainable IC and EC responses. Despite the initially increased efficacy, Combi-TT responses at 12 months were low. Combi-ICI appeared superior to Combi-TT for OS and PFS in BRAFV600 patients. Other clinical factors are determinants for first-line treatment choice.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/secundario , Antígeno CTLA-4/antagonistas & inhibidores , Europa (Continente) , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Melanoma/enzimología , Melanoma/inmunología , Melanoma/secundario , Persona de Mediana Edad , Terapia Molecular Dirigida , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/efectos adversos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Estudios Retrospectivos , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Factores de Tiempo , Victoria , Adulto Joven
20.
Cells ; 10(8)2021 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-34440798

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Quinurenina 3-Monooxigenasa/genética , Adulto , Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Línea Celular Tumoral , Femenino , Glioma/enzimología , Glioma/genética , Humanos , Estimación de Kaplan-Meier , Quinurenina/análogos & derivados , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA