Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Environ Sci Pollut Res Int ; 30(35): 83643-83656, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37347327

RESUMEN

In this study, a chlorophenol (CP) 3D-QSAR model with a double activity (bioaccumulation and degradation) combination was established. 19 CPs were divided into a training set and test set according to the ratio of 4:1. The cross-validation coefficient (q2) and non-cross-validation coefficient (R2) of the model were 0.803 (> 0.5) and 0.925 (> 0.9), respectively, indicating a good stability and predictive ability of the 3D-QSAR. 2,4,6-trichlorophenol (2,4,6-TCP) was used as a target molecule, and 46 derivatives with low comprehensive effects were designed. Out of the 46 derivatives, 11 derivatives were screened to have the good insecticidal and preservative properties. From the perspective of the toxicity of zebrafish, 4 out of the 11 derivatives were found to have lower aquatic toxicity effects. Through the food chain simulation of cyanobacteria-daphnia-swamp-mandarin fish, it was found that the bioaccumulation effect of the four derivatives was lower than that of 2,4, 6-TCP. Finally, molecular dynamics simulation was conducted using 2-CH2NH2 substituted derivatives, and it was found that the degradation effect by laccase (white rot fungi) was significantly improved in the presence of violuric acid, hydroxybenzotriazole, and syringaldehyde. This study can provide theoretical support for the development of environment-friendly technology for emerging pollutants.


Asunto(s)
Clorofenoles , Animales , Clorofenoles/toxicidad , Relación Estructura-Actividad Cuantitativa , Bioacumulación , Pez Cebra , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
2.
Biosensors (Basel) ; 13(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37232884

RESUMEN

Biological toxicity testing plays an essential role in identifying the possible negative effects induced by substances such as organic pollutants or heavy metals. As an alternative to conventional methods of toxicity detection, paper-based analytical device (PAD) offers advantages in terms of convenience, quick results, environmental friendliness, and cost-effectiveness. However, detecting the toxicity of both organic pollutants and heavy metals is challenging for a PAD. Here, we show the evaluation of biotoxicity testing for chlorophenols (pentachlorophenol, 2,4-dichlorophenol, and 4-chlorophenol) and heavy metals (Cu2+, Zn2+, and Pb2+) by a resazurin-integrated PAD. The results were achieved by observing the colourimetric response of bacteria (Enterococcus faecalis and Escherichia coli) to resazurin reduction on the PAD. The toxicity responses of E. faecalis-PAD and E. coli-PAD to chlorophenols and heavy metals can be read within 10 min and 40 min, respectively. Compared to the traditional growth inhibition experiments for toxicity measuring which takes at least 3 h, the resazurin-integrated PAD can recognize toxicity differences between studied chlorophenols and between studied heavy metals within 40 min.


Asunto(s)
Clorofenoles , Contaminantes Ambientales , Metales Pesados , Enterococcus faecalis , Escherichia coli , Clorofenoles/toxicidad
3.
Toxicol Appl Pharmacol ; 461: 116401, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706924

RESUMEN

Chlorophenols (CPs) are widespread pollutants in nature. CPs have raised significant concern due to their potential hepatotoxic effects on humans. This research aimed to ascertain the inhibitory potential of eleven CPs (2-CP, 3-CP, 4-CP, 2,4-DCP, 2,3,4-TCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,5-TeCP, 2,3,4,6-TeCP, 2,3,5,6-TeCP, and PCP) on nine human CYP isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). The CPs that inhibit the activity of CYP isoforms were detected with human liver microsomes (HLM) using a cocktail approach in vitro. The results demonstrated that trichlorophenols, tetrachlorophenols, and PCP strongly inhibited CYP2C8 and CYP2C9. The half inhibition concentration (IC50) value of 2,3,4,6-TeCP and PCP for CYP2C8 inhibition was 27.3 µM and 12.3 µM, respectively. The IC50 for the inhibition of 2,4,6-TCP, 2,3,4,6-TeCP and PCP towards CYP2C9 were calculated to be 30.3 µM, 5.8 µM and 2.2 µM, respectively. 2,3,4,6-TeCP, and PCP exhibited non-competitive inhibition towards CYP2C8. 2,4,6-TCP, 2,3,4,6-TeCP, and PCP exhibited competitive inhibition towards CYP2C9. The inhibition kinetics parameters (Ki) were 51.51 µM, 22.28 µM, 37.86 µM, 7.27 µM, 0.68 µM for 2,3,4,6-TeCP-CYP2C8, PCP-CYP2C8, 2,4,6-TCP-CYP2C9, 2,3,4,6-TeCP-CYP2C9, PCP-CYP2C9, respectively. This study also defined clear structure-activity relationships (SAR) of CPs on CYP2C8, supported by molecular docking studies. Overall, CPs were found to cause inhibitory effects on CYP isoforms in vitro, and this finding may provide a basis for CPs focused on CYP isoforms inhibition endpoints.


Asunto(s)
Clorofenoles , Inhibidores Enzimáticos del Citocromo P-450 , Humanos , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9/farmacología , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos del Citocromo P-450/toxicidad , Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Clorofenoles/toxicidad
4.
Environ Pollut ; 316(Pt 2): 120707, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427829

RESUMEN

Microplastics (MPs) can absorb halogenated organic compounds and transport them into marine anaerobic zones. Microbial reductive dehalogenation is a major process that naturally attenuates organohalide pollutants in anaerobic environments. Here, we aimed to determine the mechanisms through which MPs affect the microbe-mediated marine halogen cycle by incubating 2,4,6-trichlorophenol (TCP) dechlorinating cultures with various types of MPs. We found that TCP was dechlorinated to 4-chlorophenol in biotic control and polypropylene (PP) cultures, but essentially terminated at 2,4-dichlorophenol in polyethylene (PE) and polyethylene terephthalate (PET) cultures after incubation for 20 days. Oxygen-containing functional groups such as peroxide and aldehyde were enriched on PE and PET after incubation and corresponded to elevated levels of intracellular reactive oxygen species (ROS) in the microorganisms. Adding PE or PET to the cultures exerted limited effects on hydrogenase and ATPase activities, but delayed the expression of the gene encoding reductive dehalogenase (RDase). Considering the limited changes in the microbial composition of the enriched cultures, these findings suggested that microbial dechlorination is probably affected by MPs through the ROS-induced inhibition of RDase synthesis and/or activity. Overall, our findings showed that extensive MP pollution is unfavorable to environmental xenobiotic detoxification.


Asunto(s)
Clorofenoles , Microplásticos , Plásticos , Anaerobiosis , Especies Reactivas de Oxígeno , Clorofenoles/toxicidad , Polietileno , Tereftalatos Polietilenos
5.
Chemosphere ; 307(Pt 2): 135743, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35870612

RESUMEN

PURPOSE OF THE RESEARCH: To evaluate the association of the exposure of trichlorophenols (TCPs) on the morbidity and mortality of patients with Parkinson's disease (PD) and Alzheimer's disease (AD) using the data from the National Health and Nutrition Examination Survey (NHANES) 2003-2010. Multivariable logistic regression models and COX regression were used to evaluate the association between TCP exposure and the AD and PD risk. Least Absolute Shrinkage and Selection Operator (LASSO) methods were used to screen latent covariates. PRINCIPAL RESULTS: A total of 6333 participants over the age of 18 years were included in the analysis. After the adjustments for major confounders, participants with higher concentrations of urinary 2,4,6-TCP had higher risk of AD (odds ratios (ORs), 3.19; 95% CI: 1.07, 9.45) than the group below the limit of detection (LOD). Compared to group of below the LOD, higher urinary concentrations of 2,4,5-TCP was associated with higher risk of all-cause mortality in PD patients (log-rank P = 0.022) and all participants (log-rank P < 0.001) without adjustments for confounders. In addition, a higher risk of all-cause mortality in all participants with high urinary concentrations of 2,4,6-TCP (log-rank P = 0.001) was found without adjustments for confounders. With the adjustments for major confounders, participants with higher concentrations of urinary 2,4,5-TCP had a higher risk of death in patients with PD (hazard ratios (HRs), 53.19; 95% CI: 2.82, 1004.13) than in the group below the LOD. MAJOR CONCLUSIONS: Exposure to high concentration of 2,4,6-TCP may increase the risk of AD, and the level of 2,4,5-TCP may be associated with the risk of death in patients with PD. Our findings reveal the potential toxicity of TCPs, highlight the potential impact of TCPs on neurodegenerative diseases, and express concerns regarding the use of organochlorine pesticides.


Asunto(s)
Clorofenoles , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Plaguicidas , Adulto , Humanos , Persona de Mediana Edad , Clorofenoles/toxicidad , Estudios Transversales , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/epidemiología , Encuestas Nutricionales
6.
Chemosphere ; 302: 134802, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35504466

RESUMEN

In account of environmental remediation, an ideal photocatalyst was fabricated for the effective treatment of water systems. Herein, dual heterojunctions framed CuWO4/Bi2WO6/MnS nanocomposite (NCs) was synthesized via simple co-precipitation method followed by ultra-sonicated assisted route. The prepared NCs were investigated its photocatalytic degradation performance using para-chlorophenol (4-CP) and reduction of chromium VI (Cr (VI)) under visible light irradiation. The photocatalyst were characterized by various analytical techniques including XRD, HR-TEM, XPS, UV-vis DRS, FE-SEM, EIS, PL, ESR, Raman and N2 adsorption and desorption studies. The excellent photodegradation of 4-CP was observed within 180 min by the NCs. Similarly, the Cr (VI) reduction was about 97% within 140 min. The effect of pH and influence of different dosage of NCs and 4-CP on the photodegradation efficiency was investigated. The reusability and stability of the NCs was examined over 6 consecutive runs where the XRD and XPS confirm the structural stability of the prepared NCs. The scavenging experiment were carried out to elucidate the mechanism and the active species involved were O2-• and OH• radicals. The TOC analysis affirmed the complete mineralization of the prepared NCs. The ecotoxicity analysis was carried out to determine the toxicity effect of intermediates using ECOSAR software and the end product toxicity was also evaluated against E. coli and S. epidermis. The end product toxicity study also confirmed that the degraded product was less toxic compared to parent compound. Further, the genotoxicity study was done to understand the environmental impact using allium cepa and results confirms that there are no causes of cytotoxicity & genotoxicity by the prepared NCs. Therefore, the prepared NCs can be economical, efficient with excellent photocatalytic performance and environment friendly.


Asunto(s)
Clorofenoles , Restauración y Remediación Ambiental , Nanocompuestos , Contaminantes Químicos del Agua , Catálisis , Clorofenoles/toxicidad , Cromo , Escherichia coli , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
7.
Proc Natl Acad Sci U S A ; 119(21): e2122425119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35588450

RESUMEN

Aryl chlorides are among the most versatile synthetic precursors, and yet inexpensive and benign chlorination techniques to produce them are underdeveloped. We propose a process to generate aryl chlorides by chloro-group transfer from chlorophenol pollutants to arenes during their mineralization, catalyzed by Cu(NO3)2/NaNO3 under aerobic conditions. A wide range of arene substrates have been chlorinated using this process. Mechanistic studies show that the Cu catalyst acts in cooperation with NOx species generated from the decomposition of NaNO3 to regulate the formation of chlorine radicals that mediate the chlorination of arenes together with the mineralization of chlorophenol. The selective formation of aryl chlorides with the concomitant degradation of toxic chlorophenol pollutants represents a new approach in environmental pollutant detoxication. A reduction in the use of traditional chlorination reagents provides another (indirect) benefit of this procedure.


Asunto(s)
Cloruros , Clorofenoles , Contaminantes Ambientales , Contaminantes Químicos del Agua , Catálisis , Cloruros/síntesis química , Clorofenoles/química , Clorofenoles/toxicidad , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Halogenación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
8.
Water Res ; 218: 118431, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35468502

RESUMEN

Halophenolic disinfection byproducts (DBPs) in drinking water have attracted considerable concerns in recent years due to their wide occurrence and high toxicity. The liver has been demonstrated as a major target organ for several halophenolic DBPs. However, little is known about the underlying mechanisms of liver damage caused by halophenolic DBPs. In this study, 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodiophenol (TIP) were selected as representative halophenolic DBPs and exposed to C57BL/6 mice at an environmentally-relevant concentration (0.5 µg/L) and two toxicological concentrations (10 and 200 µg/L) for 12 weeks. Then, a combination of histopathologic and biochemical examination, liver transcriptome, serum metabolome, and gut microbiome was adopted. It was found that trihalophenol exposure significantly elevated the serum levels of alkaline phosphatase and albumin. Liver inflammation was observed at toxicological concentrations in the histopathological examination. Transcriptome results showed that the three trihalophenols could impact immune-related pathways at 0.5 µg/L, which further contributed to the disturbance of pathways in infectious diseases and cancers. Notably, TBP and TIP had higher immunosuppressive effects than TCP, which might lead to uncontrolled infection and cancer. In terms of serum metabolic profiles, energy metabolism pathway of citrate cycle and amino acid metabolism pathways of valine, leucine, and isoleucine were also significantly affected. Integration of the metabolomic and transcriptomic data suggested that a 12-week trihalophenol exposure could prominently disturb the glutathione metabolism pathway, indicating the impaired antioxidation and detoxification abilities in liver. Moreover, the disorder of the intestinal flora could interfere with immune regulation and host metabolism. This study reveals the toxic effects of halophenolic DBPs on mammalian liver and provides novel insights into the underlying mechanisms of hepatotoxicity.


Asunto(s)
Clorofenoles , Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Clorofenoles/toxicidad , Desinfectantes/análisis , Desinfectantes/toxicidad , Desinfección , Agua Potable/análisis , Halogenación , Mamíferos , Ratones , Ratones Endogámicos C57BL , Contaminantes Químicos del Agua/química
9.
Environ Sci Pollut Res Int ; 29(31): 47011-47024, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35175533

RESUMEN

2,4,6-Trichlorophenol (2,4,6-TCP) is a common waste among the resulting chlorophenols generated in the production of common products classified as an extremely toxic, mutagenic, carcinogenic and highly persistent xenobiotic in the environment. To evaluate the impact of 2,4,6-TCP in aquatic systems, the catfish species Clarias batrachus has been selected to test its toxicity due to its high market value and consumption in India. Here is presented the impact of this compound on different physiological parameters of fish: haematological parameters (haemoglobin, total erythrocyte count, total leucocyte count and mean corpuscular haemoglobin), biochemical parameters (total serum protein and total serum glucose), growth and reproductive parameters (condition factor, hepatosomatic index, maturity index, specific growth rate, growth hormone, 17ß-estradiol and testosterone), exposed to two concentrations of 2,4,6-TCP (0.5 mg/L and 1 mg/L - 1/10th and 1/20th of the LC50) for a period of 15, 30 and 45 days. The results showed that C. batrachus even when exposed to the lower concentration (0.5 mg/L) for the shortest time (15 days) negatively impacted the organism in all the assessed parameters. This was highlighted by the Integrated Biomarker Response index (IBR), showing worse scores for the treatments (up to 20 × worse than the control). This work highlights the importance of continued research on the impact of 2,4,6-TCP, on an important commercial, supported by the high environmental persistence of this compound that can reach the same range of tested concentrations.


Asunto(s)
Bagres , Clorofenoles , Animales , Biomarcadores/metabolismo , Bagres/metabolismo , Clorofenoles/metabolismo , Clorofenoles/toxicidad , Dosificación Letal Mediana
10.
Chemosphere ; 286(Pt 1): 131575, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34325264

RESUMEN

Metabolic uncoupling technology was one of the methods widely used to on-site control the production of excess sludge in wastewater treatment processes. However, the uncoupler effects on soluble microbial products (SMP), microbial activity, and environment impact have few been reported. This study showed that sludge yield was reduced by 33.3% at 2,6-dichlorophenol (2,6-DCP) concentrations of 10 mg/L. The addition of 2,6-DCP also reduced the content of polysaccharide and protein in SMP, and the three-dimension excitation emission matrix (3D-EEM) suggested that the fluorescence intensities of humic acid-like, fulvic acid-like, and tryptophan protein-like substances decreased, proving that 2,6-DCP addition will weaken the interaction between microorganisms and the environmental matrix. Moreover, 2,6-DCP addition will change the microbial morphology and community of activated sludge. The active or respiring bacteria portion was lessened, and sludge flocs become dispersed, but it will not affect its settling performance. Surprisingly, 2,6-DCP has certain biodegradability and could be used as an environmentally friendly metabolic uncoupler under low-concentration dosing conditions. This study systematically evaluated the effect of 2,6-DCP on sludge production, SMP contents, microbial morphology, microbial community, demonstrating the environmental impact and application feasibility in the wastewater treatment systems.


Asunto(s)
Clorofenoles , Microbiota , Purificación del Agua , Reactores Biológicos , Clorofenoles/toxicidad , Aguas del Alcantarillado
11.
Sci Total Environ ; 807(Pt 3): 150974, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34656601

RESUMEN

Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10-13 and 2.37 × 10-13 cm3 molecule-1 s-1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly­oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.


Asunto(s)
Clorofenoles , Radical Hidroxilo , Clorofenoles/toxicidad , Semivida , Cinética
12.
Aquat Toxicol ; 236: 105868, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34051627

RESUMEN

2,4-Dichlorophenol (2,4-DCP), an estrogenic endocrine disruptor, is widely spread in aquatic environments and may interfere with normal physiological functions in fish. However, the influence of this chemical on the synthesis of sex hormones is not well understood. In the present study, zebrafish (Danio rerio) were exposed to 2,4-DCP (80 and 160 µg/L) with or without fadrozole (an aromatase inhibitor which inhibits the synthesis of estradiol) from 20 to 40 days post fertilization. Then, the sex ratio, the content of vitellogenin (VTG) and sex hormones (androstenedione (ASD), estrone (E1), 17ß-estradiol (E2), estriol (E3), testosterone (T) and 11-ketotestosterone (11-KT)) were studied. Furthermore, the expression of genes involved in synthesis of sex hormones (cyp19a1a, cyp19a1b, 17ß-hsd, 11ß-hsd and cyp11b) along with the DNA methylation in cyp19a1a and cyp19a1b promoters was analyzed. The results showed that 2,4-DCP exposure led to female-biased ratio, increased the content of ASD, E2 and VTG, as well as the ratio of E2/11-KT, while decreased the levels of androgens (T and 11-KT). The sex hormonal change can be explained by the significant up-regulation of cyp19a1a, cyp19a1b, 17ß-hsd and 11ß-hsd genes. In addition, hypomethylation of cyp19a1a promoter was involved in this process. Notably, fadrozole can partly attenuate 2,4-DCP-induced feminization, and recover the levels of ASD, E2 and 11-KT. Thus, these results demonstrate that 2,4-DCP induces feminization in fish by disrupting the synthesis of sex hormones.


Asunto(s)
Clorofenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Inhibidores de la Aromatasa , Metilación de ADN/efectos de los fármacos , Disruptores Endocrinos , Estradiol , Estrógenos/farmacología , Fadrozol , Femenino , Feminización/genética , Hormonas Esteroides Gonadales , Humanos , Masculino , Fenoles , Razón de Masculinidad , Vitelogeninas/metabolismo , Pez Cebra/metabolismo
13.
J Cell Physiol ; 236(11): 7605-7611, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33928643

RESUMEN

2,4-DCP (2,4-dichlorophenol) is an environmental estrogen that is ubiquitously distributed in the environment and widely used to produce herbicides and pharmaceutical intermediates. Although 2,4-DCP is suspected to have endocrine disruption, the reproductive toxicity of 2,4-DCP in mammals has not been adequately assessed. In the present study, we examined the effect of 2,4-DCP on the fertility of mouse eggs. The data showed that oral administration of 2,4-DCP (180 mg/kg/day for 7 days) compromises the fertilization rate of mouse oocytes. To further analyze the mechanism by which 2,4-DCP decreases fertilization, the key regulators and events during fertilization of mouse eggs were investigated. We found that the dynamics of cortical granules (CGs) were disrupted by showing the redistribution of CG free domain in 2,4-DCP-administered oocytes. This abnormality perturbed the sperm binding site in the zona pellucida (ZP) and dramatically reduced the number of sperm binding to the ZP of 2,4-DCP-administered oocytes. In addition, the abundance of Juno, a sperm receptor on the egg membrane, was also decreased and its distribution was mislocated in 2,4-DCP-administered oocytes. Finally, we validated that the defects of fertilization participants and events caused by 2,4-DCP might be mediated by the increased level of reactive oxygen species-induced apoptosis of oocytes. Therefore, we demonstrate that 2,4-DCP compromises the fertilization ability of mouse oocytes via inducing oxidative stress.


Asunto(s)
Clorofenoles/toxicidad , Gránulos Citoplasmáticos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Oocitos/efectos de los fármacos , Interacciones Espermatozoide-Óvulo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Femenino , Fertilización In Vitro , Ratones Endogámicos ICR , Oocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo
14.
Talanta ; 225: 121966, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592720

RESUMEN

Bacteria detection and toxicity measurement are essential in many aspects. Becoming increasingly popular in recent years, paper-based analytical devices (PADs) have proven to be cost-effective, portable and eco-friendly with quantitative diagnostic results. In this work, by a straightforward soaking-drying method, a resazurin-deposited PAD has been developed for rapid bacteria detection and biotoxicity measurement. The colorimetric response on the PAD was generated from metabolic reduction of resazurin by Enterococcus faecalis, a facultative anaerobic bacterial strain. After recording and quantifying the colorimetric response with Hue value by a smartphone, the bioassay on PAD enables the detection of resazurin reduction kinetics difference among bacteria at various densities in 10 min. Thereby, the bioassay on PAD was applied to study the toxicity of two chlorophenols, i.e. pentachlorophenol (PCP) and 4-chlorophenol (4-CP), to E. faecalis. Compared to growth-based inhibition test, which takes 5 h, this assay shows higher efficiency, i.e. in 30 min, the biotoxicity difference between PCP and 4-CP can be identified.


Asunto(s)
Clorofenoles , Pentaclorofenol , Clorofenoles/toxicidad , Colorimetría , Enterococcus faecalis , Cinética , Pentaclorofenol/toxicidad
15.
Bioresour Technol ; 323: 124627, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33412498

RESUMEN

Considering the extensive usage of chlorophenols as well as their refractory and toxic characteristics, 2,4,6-trichlorophenol (2,4,6-TCP) and its metabolic intermediates that cause the acute toxicity of sludge were comprehensively evaluated using a bioassay including Photobacterium phosphoreum in a sequencing batch bioreactor (SBR), and the effects of 2,4,6-TCP wastewater treatment on mRNA expression were explored. The results showed that acute toxicity of sludge and effluent chemical oxygen demand greatly exceeded that of the other SBR without 2,4,6-TCP acclimation when 2,4,6-TCP wastewater treatment in the range of 10-50 mg/L was used. The identified intermediates and 2,4,6-TCP largely contributed to the acute toxicity of sludge, which favorably fitted the Fit Exponential Decay (R2 > 0.93). During the stable stages for treating 50 mg/L 2,4,6-TCP in the influent, the mRNA expression for encoding functional proteins based on the genus Pseudomonas was markedly inhibited after the completion of the SBR operation.


Asunto(s)
Clorofenoles , Purificación del Agua , Reactores Biológicos , Clorofenoles/toxicidad , Expresión Génica , Photobacterium , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
16.
Sci Total Environ ; 769: 144569, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33477043

RESUMEN

Biological safety evaluation and toxic by-products identification are critical issues in the partial oxidation process. Previous studies have shown that the whole toxicity increased in the effluent of an ozonation process for chlorophenols removal. Here, this study systematically investigated the changes of acute toxicity during the ozonation of 3-chlorophenol under four key operational conditions, including initial 3-chlorophenol concentration (20-60 mg/L), ozone concentration (14-42 mg/L), reaction pH (3-10) and ozonation time (0-50 min). The results found that the ozonation process induced a significant increase in the acute toxicity, followed by its gradual decrease. The observation of higher acute toxicity increase generally happened at higher initial 3-chlorophenol concentration, lower ozone concentration and lower reaction pH. At the toxicity peaks, the oxidizing intermediates posed acute toxicity equal to 65.8%-96.3% of the whole toxicity. Among them, free active chlorine (FAC) contributed 21.4%-51.6%, and its concentrations significantly correlated to the acute toxicity change. Therefore, two possible FAC generation pathways initiated by ozone molecule were proposed: (i) bond breaking of the oxychloride complex formed by the combination of chloride ion and zwitterion; or (ii) hydrolysis of ozonides formed by the electrophilic reaction of ozone molecule. Together, these results firstly revealed the significant toxicity contribution of oxidizing intermediates during the ozonation of chlorophenols, supporting further development of safe and effective ozone-based water treatment schemes.


Asunto(s)
Clorofenoles , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Clorofenoles/toxicidad , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Contaminantes Químicos del Agua/toxicidad
17.
Ecotoxicol Environ Saf ; 209: 111786, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33340956

RESUMEN

A total of 90 wooden toys were collected, and six wood preservatives (chlorophenols and lindane) were analyzed by using gas chromatography-tandem mass spectrometry to assess the exposure risk of children to wood preservatives through oral contact with wooden toys. The detection rates of six preservatives ranged from 2.2% to 22.2%. The contents of the preservatives ranged from 0.6 µg/kg to 9.6 µg/kg. 2,4-Dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) had higher detection rates and contents than other preservatives. Thus, their migration behaviors from toys to saliva were further investigated. In 11 positive samples, the max migration ratios of 2,4-DCP and 2,4,6-TCP ranged from 7.1% to 20.3% and from 11.1% to 24.8%, respectively. For children aged 3-36 months, the daily average 2,4-DCP exposure level associated with wooden toys ranged from 2.7 pg/(kg day) to 46.9 pg/(kg day), and the daily average 2,4,6-TCP exposure ranged from 3.6 pg/(kg day) to 69.4 pg/(kg day). The contribution to exposure provided by the saliva mobilization pathway was more than that provided by the ingestion of scraped-off toys, and the exposure level of 2,4,6-TCP was greater than that of 2,4-DCP. The max hazard quotient for 2,4-DCP was 1.9 × 10-4, and the max cancer risk for 2,4,6-TCP was 1.2 × 10-9. The above results indicated that although wood preservatives were distributed in wooden toys, exposure arising from directly mouthing these materials currently does not pose unacceptable risks to children.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Juego e Implementos de Juego , Madera/química , Niño , Preescolar , China , Clorofenoles/análisis , Clorofenoles/toxicidad , Exposición a Riesgos Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas , Hexaclorociclohexano/análisis , Hexaclorociclohexano/toxicidad , Humanos , Lactante , Medición de Riesgo , Saliva/química
18.
Water Sci Technol ; 82(10): 1971-1981, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33263576

RESUMEN

The correlation between sludge reduction induced by 2,4,6-trichlorophenol (2,4,6-TCP) as an uncoupler and sludge toxicity was investigated in sequence batch reactors over a 100-d operation period. The influent concentrations of 2,4,6-TCP tested were 10 mg/L, 30 mg/L, and 50 mg/L. Sludge reduction, chemical oxygen demand (COD) removal rate, and sludge toxicity were measured. The results showed that from 30 to 80 d, when the COD removal rate was at an acceptable level, the sludge reduction levels for the 10 mg/L, 30 mg/L, and 50 mg/L groups were 9.7%, 31.6%, and 41.5%, respectively, and the average sludge toxicity values were 24.2%, 38.0%, and 53.0%, respectively. Sludge reduction was positively correlated with sludge toxicity. The two-dimensional polyacrylamide gel electrophoresis/results showed that extracellular and intracellular proteins secreted by the activated sludge during uncoupling metabolism were positively correlated with sludge toxicity. Taking the COD removal rate, sludge reduction, and sludge toxicity into consideration, the optimal influent concentration of the uncoupler 2,4,6-TCP was 30 mg/L when the initial mixed liquid suspended solids of sludge was 2,500 mg/L.


Asunto(s)
Clorofenoles , Aguas del Alcantarillado , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Clorofenoles/toxicidad , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos
19.
Environ Toxicol Pharmacol ; 80: 103507, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33007436

RESUMEN

Tetrachlorobisphenol A (TCBPA) can promote intracellular reactive oxygen species (ROS) accumulation. However, limited attention has been given to mechanisms underlying TCBPA exposure-associated ROS accumulation. Here, such mechanisms were explored in the simple eukaryotic model organism Saccharomyces cerevisiae exposed to multiple concentrations of TCBPA. Addition of diphenyleneiodonium, a specific inhibitor of NADPH oxidase, blocked TCBPA treatment-associated intracellular ROS accumulation. NADPH oxidase can be activated by calcineurin, mitogen-activated protein kinase (MAPK), and tyrosine kinase. Therefore, corresponding specific inhibition respectively on these three kinases was performed and results suggested that the Ca2+ signaling pathway, MAPK pathway, and tyrosine kinase pathway all contributed to the TCBPA exposure-associated intracellular ROS accumulation. In addition, TCBPA exposure-associated up-regulation of genes involved in ROS production and down-regulation of catalase promoted ROS accumulation in S. cerevisiae. To sum up, our current results provide insights into the understanding of TCBPA exposure-associated ROS accumulation.


Asunto(s)
Clorofenoles/toxicidad , Retardadores de Llama/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Calcio/metabolismo , Catalasa/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Compuestos Onio/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa-1/genética
20.
J Hazard Mater ; 400: 123079, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32569989

RESUMEN

Humic acid (HA) is ubiquitous organic matter derived by microbial metabolisms. This polymeric substance has both hydrophilic and hydrophobic moieties, and it is known that they affect to bioavailability of environmental pollutants. Objective of this study is to investigate the toxicological effects of chlorophenols to green algae observed at various pH and concentration of HA. Toxicity was determined by algal growth inhibition rate and EC50 of green algae Chlorella vulgaris. As a result, toxicity of 2,4-dichlorophenol was mitigated with increase of the coexisting amount of HA and solution pH. In the case of coexisting 2.5 ppm HA, EC50 of 2,4-dichlorophenol was 12.2 ppm and approximately three times higher than the case of absence of HA at pH 7.5. Meanwhile, Toxicity of 2,4,6-trichlorophenol was enhanced with increase of the coexisting amount of HA. In the case of absence of HA, EC50 of 2,4,6-trichlorophenol was 13.1 ppm and approximately two times higher than the case of coexisting 2.5 ppm HA at pH 7.5. Results suggested that toxicity of chlorophenols is influenced by the electrostatic and hydrophobic interaction between HA and chlorophenols. The hypothesis of toxicity enhancement pathway was proposed in the case of equilibrium-state 2,4,6-trichlorophenol between anionic and nonionic states.


Asunto(s)
Chlorella vulgaris , Clorofenoles , Contaminantes Químicos del Agua , Clorofenoles/toxicidad , Sustancias Húmicas , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...