Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bioenerg Biomembr ; 43(6): 651-61, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22081211

RESUMEN

Trypanosoma cruzi is a hemoflagellate protozoan that causes Chagas' disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host. Herein, we performed a functional assessment of mitochondrial metabolism in the following two distinct evolutive forms of T. cruzi: the insect stage epimastigote and the freshly isolated bloodstream trypomastigote. We observed that in comparison to epimastigotes, bloodstream trypomastigotes facilitate the entry of electrons into the electron transport chain by increasing complex II-III activity. Interestingly, cytochrome c oxidase (CCO) activity and the expression of CCO subunit IV were reduced in bloodstream forms, creating an "electron bottleneck" that favored an increase in electron leakage and H(2)O(2) formation. We propose that the oxidative preconditioning provided by this mechanism confers protection to bloodstream trypomastigotes against the host immune system. In this scenario, mitochondrial remodeling during the T. cruzi life cycle may represent a key metabolic adaptation for parasite survival in different hosts.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Estadios del Ciclo de Vida/fisiología , Mitocondrias/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Adaptación Fisiológica/fisiología , Animales , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Complejo II de Transporte de Electrones/inmunología , Complejo III de Transporte de Electrones/inmunología , Humanos , Peróxido de Hidrógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Mitocondrias/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/inmunología
2.
J Immunol ; 183(8): 5379-87, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19786549

RESUMEN

The prevalence of allergies and asthma among the world's population has been steadily increasing due to environmental factors. It has been described that exposure to ozone, diesel exhaust particles, or tobacco smoke exacerbates allergic inflammation in the lungs. These environmental oxidants increase the levels of cellular reactive oxygen species (ROS) and induce mitochondrial dysfunction in the airway epithelium. In this study, we investigated the involvement of preexisting mitochondrial dysfunction in the exacerbation of allergic airway inflammation. After cellular oxidative insult induced by ragweed pollen extract (RWE) exposure, we have identified nine oxidatively damaged mitochondrial respiratory chain-complex and associated proteins. Out of these, the ubiquinol-cytochrome c reductase core II protein (UQCRC2) was found to be implicated in mitochondrial ROS generation from respiratory complex III. Mitochondrial dysfunction induced by deficiency of UQCRC2 in airway epithelium of sensitized BALB/c mice prior the RWE challenge increased the Ag-induced accumulation of eosinophils, mucin levels in the airways, and bronchial hyperresponsiveness. Deficiency of UQCRC1, another oxidative damage-sensitive complex III protein, did not significantly alter cellular ROS levels or the intensity of RWE-induced airway inflammation. These observations suggest that preexisting mitochondrial dysfunction induced by oxidant environmental pollutants is responsible for the severe symptoms in allergic airway inflammation. These data also imply that mitochondrial defects could be risk factors and may be responsible for severe allergic disorders in atopic individuals.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Inflamación/inmunología , Mitocondrias/inmunología , Polen/inmunología , Especies Reactivas de Oxígeno/metabolismo , Hipersensibilidad Respiratoria/inmunología , Alérgenos/inmunología , Ambrosia/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Complejo III de Transporte de Electrones/inmunología , Humanos , Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Oligonucleótidos Antisentido/inmunología , Oligonucleótidos Antisentido/metabolismo , Extractos Vegetales/inmunología , Especies Reactivas de Oxígeno/inmunología , Estallido Respiratorio/inmunología , Hipersensibilidad Respiratoria/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo
3.
Biochim Biophys Acta ; 1317(3): 199-209, 1996 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-8988236

RESUMEN

Progressive exercise intolerance was associated with a decreased maximal rate of ubiquinol cytochrome c reductase (complex III) activity in the muscle mitochondria of the studied patient and with a thirty five-fold increase in the I50 for antimycin A. In contrast, myxothiazol sensitivity was not altered. Complex III activity was stable at 37 degrees C, but progressively decreased at 4 degrees C. An heteroplasmic G to A mutation at position 15615 of the mitochondrial DNA, resulting in the replacement of the highly conserved Gly290 in cytochrome b by Asp, was identified. Histochemical studies showed increased cytochrome oxidase and succinate dehydrogenase activities under the sarcolemma of type I fibres. After partial extraction of mitochondria from the muscle, the residual pellet contained a lower percentage of the mutation than did whole muscle, suggesting that the percentage of mutation is higher in the most readily extracted mitochondria, most probably present under the sarcolemma. In the current 8 transmembrane helix model of cytochrome b, Gly290 lies at the end of the sixth transmembrane helix, facing the intermembrane space and close to the presumed sites of interaction between cytochrome b, the iron-sulfur protein and the 9.5 kDa protein. Since immunoblotting experiments showed a relative decrease in the proportions of these three subunits in the patient's mitochondria compared with the other complex III subunits, it is probable that the complex III instability and the relative decrease in these subunits are related to the mutation. The relationship between the decrease in the apparent affinity for antimycin A and the instability of complex III are discussed.


Asunto(s)
Antimicina A/análogos & derivados , Complejo III de Transporte de Electrones/genética , Mitocondrias Musculares/enzimología , Esfuerzo Físico , Secuencia de Aminoácidos , Antimicina A/farmacología , ADN Mitocondrial/genética , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/inmunología , Complejo III de Transporte de Electrones/metabolismo , Humanos , Membranas Intracelulares/química , Cinética , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutación , Fosforilación Oxidativa , Consumo de Oxígeno , Mapeo Restrictivo
4.
FEBS Lett ; 390(2): 137-41, 1996 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-8706844

RESUMEN

To determine the topology of subunit VIII of the yeast ubiquinol-cytochrome c oxidoreductase in the mitochondrial inner membrane, an epitope has been introduced in the N-terminal half of this protein. Previous topology studies had shown that at least the C-terminus faces the intermembrane space [Hemrika and Berden (1990) Eur. J. Biochem. 192, 761-765]. Based on sensitivity of the protein to proteinase K digestion we now suggest that the N-terminus of subunit VIII is similarly oriented, implying that this subunit does not span the membrane. Despite this, however, subunit VIII cannot be extracted from the membrane even after treatment with 0.1 M Na2CO3 at pH 11.5, showing that the protein is integrally embedded in the membrane. A similar behaviour was displayed by another low molecular weight protein of the complex, subunit VII, which faces the matrix side. A model for the topology of these subunits in the membrane is discussed with respect to the structure of the complex and their involvement in quinone binding.


Asunto(s)
Complejo III de Transporte de Electrones/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Membrana Celular/enzimología , ADN de Hongos/genética , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/inmunología , Epítopos/química , Epítopos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Prueba de Complementación Genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/inmunología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/inmunología , Transformación Genética
5.
Eur J Biochem ; 230(1): 359-63, 1995 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-7601123

RESUMEN

The topology of the ubiquinol:cytochrome-c oxidoreductase (cytochrome bc1 complex) from Paracoccus denitrificans was investigated by immunoelectron microscopy with sequence-specific murine monoclonal antibodies. Epitope mapping with synthetic peptides and enzymic proteolytic cleavage of the cytochrome bc1 complex were employed to localize precisely the respective antibody epitopes on the subunits of this membrane protein complex. Localization of defined epitopes on the cytochrome bc1 complex by immunoelectron microscopy clearly demonstrates that the N-terminus of the cytochrome b subunit is exposed to the periplasmic space. This finding is in agreement with a nine-transmembrane-helices topology model (I-IX) as predicted before for cytochrome b. However, due to other published evidence we favour the existence of an additional transmembrane helix (helix 0) complementing a more recently published eight-helices model (A-C,cd, D-H), at least for prokaryotes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Grupo Citocromo b/química , Complejo III de Transporte de Electrones/química , Mapeo Epitopo , Paracoccus denitrificans/enzimología , Secuencia de Aminoácidos , Complejo III de Transporte de Electrones/inmunología , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
6.
J Biol Chem ; 265(35): 21468-75, 1990 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-2174874

RESUMEN

The properties of the ubiquinol-cytochrome c reductase complex (bc1 complex) have been studied in respiratory defective mutants of Saccharomyces cerevisiae bearing lesions in the core 1 subunit. All the cor1 mutants examined have greatly reduced concentrations of mitochondrial cytochrome b and display succinate-cytochrome c reductase activities near the limits of detection. Two mutants (E576 and C7), however, had 5% of wild type activity when the cells were grown at 23 degrees C, but not at 37 degrees C. The temperature-sensitive phenotype was determined to result from substitution of either Arg or Glu for Gly68 of the core 1 subunit. The respiratory competent revertants E576/R8 and C7/R4 derived from E576 and C7 retain the temperature sensitivity of the original mutants. Both revertants are temperature sensitive in vivo, but only mitochondria isolated from E576/R8 are temperature sensitive in vitro. The bc1 complex of mitochondria isolated from this revertant displays a normal value of the ratio Kcat/Km for cytochrome c and four times higher than the wild type for duroquinol. The succinate-cytochrome c reductase activity of E576/R8 is almost completely abolished after incubation at 37 degrees C for 90 min. It is inferred that the quaternary structure of ubiquinol-cytochrome c reductase complex is more labile at the nonpermissive temperature in the mutant and undergoes an alteration such that cytochrome b is no longer able to receive electrons through either the "o" or the "i" site pathway. The temperature lability and kinetic properties of the mutant enzyme point to a requirement of the core 1 not only for assembly but also for the catalytic activity of the complex.


Asunto(s)
Complejo III de Transporte de Electrones/genética , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Western Blotting , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/inmunología , Proteínas Fúngicas/metabolismo , Cinética , Mutación , Consumo de Oxígeno , Saccharomyces cerevisiae/genética , Análisis Espectral , Temperatura
8.
Biochim Biophys Acta ; 1018(2-3): 217-22, 1990 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-2168209

RESUMEN

Some of the different molecular pathologies of respiratory-chain dysfunction in human mitochondrial myopathies will be reviewed in relation to the findings in 58 cases. Deletions of mitochondrial DNA were identified in 21 cases [36%]. There was some correlation between the sites of the deletion and the mitochondrial biochemistry in patients with defects of Complex I but not in cases with more extensive loss of respiratory chain activity. Complex I and Complex IV polypeptides were usually normal in deleted cases. Non-deleted cases, however, often showed specific subunit deficiencies which involved the products of both nuclear and mitochondrial genes. Immunoblots of respiratory-chain polypeptides in one case pointed to defective translocation of the Rieske precursor from the cytosol into the mitochondria. The pathogenic role of circulating autoantibodies to specific matrix proteins and the nature of the target antigens in two patients with mitochondrial encephalomyopathies and respiratory-chain dysfunction will also be discussed.


Asunto(s)
Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Mitocondrias Musculares/enzimología , Enfermedades Musculares/enzimología , Quinona Reductasas/genética , Autoanticuerpos/análisis , Deleción Cromosómica , ADN/análisis , Transporte de Electrón , Complejo III de Transporte de Electrones/inmunología , Complejo IV de Transporte de Electrones/inmunología , Femenino , Humanos , Immunoblotting , Síndrome de Kearns-Sayre/genética , Masculino , Enfermedades Musculares/genética , Enfermedades Musculares/patología , NAD(P)H Deshidrogenasa (Quinona) , Quinona Reductasas/inmunología
9.
Biochim Biophys Acta ; 894(2): 270-6, 1987 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-2823894

RESUMEN

The distribution of respiratory chain complexes in bovine heart and human muscle mitochondria has been explored by immunoelectron microscopy with antibodies made against bovine heart mitochondrial proteins in conjunction with protein A-colloidal gold (12-nm particles). The antibodies used were made against NADH-coenzyme Q reductase (complex I), ubiquinol cytochrome c oxidoreductase (complex III), cytochrome c oxidase, core proteins isolated from complex III and the non-heme iron protein of complex III. Labeling of bovine heart tissue with any of these antibodies gave gold particles randomly distributed along the mitochondrial inner membrane. The labeling of muscle tissue from a patient with a mitochondrial myopathy localized by biochemical analysis to complex III was quantitated and compared with the labeling of human control muscle tissue. Complex I and cytochrome c oxidase antibodies reacted to the same level in myopathic and normal muscle samples. Antibodies to complex III or its components reacted very poorly to the patient's tissue but strongly to control muscle samples. Immunoelectron microscopy using respiratory chain antibodies appears to be a promising approach to the diagnosis and characterization of mitochondrial myopathies when only limited amounts of tissue are available for study.


Asunto(s)
Complejo III de Transporte de Electrones/análisis , Mitocondrias Musculares/enzimología , Enfermedades Musculares/enzimología , Transporte de Electrón , Complejo III de Transporte de Electrones/inmunología , Complejo IV de Transporte de Electrones/análisis , Humanos , Microscopía Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...