Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 8(6): e0044823, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37850752

RESUMEN

A microbe and its host are in constant communication. An emerging platform for direct communication is the membrane contact sites that form between several pathogens and host organelles. Here, we review our progress on the molecular mechanisms underlying contact sites between host mitochondria and the human parasite Toxoplasma gondii. We discuss open questions regarding their function during infection as well as those formed between the host endoplasmic reticulum and Toxoplasma.


Asunto(s)
Toxoplasma , Vacuolas , Humanos , Vacuolas/parasitología , Retículo Endoplásmico/parasitología , Membranas Mitocondriales
2.
Cell Microbiol ; 23(8): e13328, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33740320

RESUMEN

Annulate lamellae (AL) have been observed many times over the years on electron micrographs of rapidly dividing cells, but little is known about these unusual organelles consisting of stacked sheets of endoplasmic reticulum-derived membranes with nuclear pore complexes (NPCs). Evidence is growing for a role of AL in viral infection. AL have been observed early in the life cycles of the hepatitis C virus (HCV) and, more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggesting a specific induction of mechanisms potentially useful to these pathogens. Like other positive-strand RNA viruses, these viruses induce host cells membranes rearrangements. The NPCs of AL could potentially mediate exchanges between these partially sealed compartments and the cytoplasm. AL may also be involved in regulating Ca2+ homeostasis or cell cycle control. They were recently observed in cells infected with Theileria annulata, an intracellular protozoan parasite inducing cell proliferation. Further studies are required to clarify their role in intracellular pathogen/host-cell interactions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Orgánulos/microbiología , Orgánulos/parasitología , Animales , COVID-19 , Citoplasma/virología , Retículo Endoplásmico/microbiología , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Humanos , Orgánulos/ultraestructura , Orgánulos/virología , SARS-CoV-2/fisiología
3.
PLoS Pathog ; 17(2): e1009293, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534803

RESUMEN

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.


Asunto(s)
Retículo Endoplásmico/parasitología , Proteínas del Choque Térmico HSP40/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Tiorredoxina Reductasa 2/metabolismo , Antimaláricos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Chaperonas Moleculares , Oxidación-Reducción , Estrés Oxidativo , Pliegue de Proteína , Proteínas Protozoarias/genética , Tiorredoxina Reductasa 2/genética
4.
mBio ; 11(4)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636244

RESUMEN

Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.


Asunto(s)
Movimiento Celular , Retículo Endoplásmico/metabolismo , Interacciones Huésped-Patógeno , Toxoplasma/metabolismo , Respuesta de Proteína Desplegada , Animales , Calcio/metabolismo , Células Cultivadas , Retículo Endoplásmico/parasitología , Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Fibroblastos/parasitología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología
5.
PLoS Pathog ; 15(7): e1007982, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356625

RESUMEN

To colonize phagocytes, Leishmania subverts microbicidal processes through components of its surface coat that include lipophosphoglycan and the GP63 metalloprotease. How these virulence glycoconjugates are shed, exit the parasitophorous vacuole (PV), and traffic within host cells is poorly understood. Here, we show that lipophosphoglycan and GP63 are released from the parasite surface following phagocytosis and redistribute to the endoplasmic reticulum (ER) of macrophages. Pharmacological disruption of the trafficking between the ER and the Golgi hindered the exit of these molecules from the PV and dampened the cleavage of host proteins by GP63. Silencing by RNA interference of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptors Sec22b and syntaxin-5, which regulate ER-Golgi trafficking, identified these host proteins as components of the machinery that mediates the spreading of Leishmania effectors within host cells. Our findings unveil a mechanism whereby a vacuolar pathogen takes advantage of the host cell's secretory pathway to promote egress of virulence factors beyond the PV.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Leishmania/fisiología , Leishmania/patogenicidad , Proteínas Protozoarias/fisiología , Factores de Virulencia/fisiología , Animales , Retículo Endoplásmico/parasitología , Femenino , Glicoesfingolípidos/fisiología , Humanos , Leishmania/crecimiento & desarrollo , Leishmaniasis/parasitología , Metaloendopeptidasas/fisiología , Ratones , Ratones Endogámicos C57BL , Fagocitos/parasitología , Fagocitosis , Fagosomas/parasitología , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/fisiología , Vías Secretoras , Vacuolas/parasitología , Virulencia
6.
Artículo en Inglés | MEDLINE | ID: mdl-30181373

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite that has infected one-third of the population. Upon infection of warm-blooded vertebrates, the replicating form of the parasite (tachyzoite) converts into a latent form (bradyzoite) present in tissue cysts. During immune deficiency, bradyzoites can reconvert into tachyzoites and cause life-threatening toxoplasmosis. We previously reported that translational control through phosphorylation of the α subunit of T. gondii eukaryotic initiation factor 2 (eIF2α) (TgIF2α) is a critical component of the parasite stress response. Diverse stresses can induce the conversion of tachyzoites to bradyzoites, including those disrupting the parasite's endoplasmic reticulum (ER) (ER stress). Toxoplasma possesses four eIF2α kinases, one of which (TgIF2K-A) localizes to the parasite ER analogously to protein kinase R-like endoplasmic reticulum kinase (PERK), the eIF2α kinase that responds to ER stress in mammalian cells. Here, we investigated the effects of a PERK inhibitor (PERKi) on Toxoplasma Our results show that the PERKi GSK2606414 blocks the enzymatic activity of TgIF2K-A and reduces TgIF2α phosphorylation specifically in response to ER stress. PERKi also significantly impeded multiple steps of the tachyzoite lytic cycle and sharply lowered the frequency of bradyzoite differentiation in vitro Pretreatment of host cells with PERKi prior to infection did not affect parasite infectivity, and PERKi still impaired parasite replication in host cells lacking PERK. In mice, PERKi conferred modest protection from a lethal dose of Toxoplasma Our findings represent the first pharmacological evidence supporting TgIF2K-A as an attractive new target for the treatment of toxoplasmosis.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/parasitología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Parásitos/efectos de los fármacos , Parásitos/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología
7.
mSphere ; 3(4)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068561

RESUMEN

Glucose transporters are important for viability and infectivity of the disease-causing amastigote stages of Leishmania mexicana The Δgt1-3 null mutant, in which the 3 clustered glucose transporter genes, GT1, GT2, and GT3, have been deleted, is strongly impaired in growth inside macrophages in vitro We have now demonstrated that this null mutant is also impaired in virulence in the BALB/c murine model of infection and forms lesions considerably more slowly than wild-type parasites. Previously, we established that amplification of the PIFTC3 gene, which encodes an intraflagellar transport protein, both facilitated and accompanied the isolation of the original Δgt1-3 null mutant generated in extracellular insect-stage promastigotes. We have now isolated Δgt1-3 null mutants without coamplification of PIFTC3 These amplicon-negative null mutants are further impaired in growth as promastigotes, compared to the previously described null mutants containing the PIFTC3 amplification. In contrast, the GT3 glucose transporter plays an especially important role in promoting amastigote viability. A line that expresses only the single glucose transporter GT3 grows as well inside macrophages and induces lesions in animals as robustly as do wild-type amastigotes, but lines expressing only the GT1 or GT2 transporters replicate poorly in macrophages. Strikingly, GT3 is restricted largely to the endoplasmic reticulum in intracellular amastigotes. This observation raises the possibility that GT3 may play an important role as an intracellular glucose transporter in the infectious stage of the parasite life cycle.IMPORTANCE Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals.


Asunto(s)
Retículo Endoplásmico/parasitología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Leishmania mexicana/patogenicidad , Proteínas Protozoarias/genética , Animales , Línea Celular , Femenino , Técnicas de Inactivación de Genes , Leishmania mexicana/genética , Estadios del Ciclo de Vida , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Mutación , Virulencia
8.
Sci Rep ; 7(1): 12710, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28983103

RESUMEN

Despite marked reductions in morbidity and mortality in the last ten years, malaria still takes a tremendous toll on human populations throughout tropical and sub-tropical regions of the world. The absence of an effective vaccine and resistance to most antimalarial drugs available demonstrate the urgent need for new intervention strategies. Phosphoinositides are a class of lipids with critical roles in numerous processes and their specific subcellular distribution, generated through the action of kinases and phosphatases, define organelle identity in a wide range of eukaryotic cells. Recent studies have highlighted important functions of phosphoinositide kinases in several parts of the Plasmodium lifecycle such as hemoglobin endocytosis and cytokinesis during the erythrocytic stage however, nothing is known with regards to the parasite's putative phosphoinositide phosphatases. We present the identification and initial characterization of a putative homologue of the SAC1 phosphoinositide phosphatase family. Our results show that the protein is expressed throughout the asexual blood stages and that it localises to the endoplasmic reticulum and potentially to the Golgi apparatus. Furthermore, conditional knockdown and knockout studies suggest that a minimal amount of the protein are likely required for survival during the erythrocytic cycle.


Asunto(s)
Eritrocitos/enzimología , Malaria Falciparum/genética , Fosfoinosítido Fosfatasas/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Antimaláricos/farmacología , Citocinesis , Retículo Endoplásmico/genética , Retículo Endoplásmico/parasitología , Eritrocitos/parasitología , Aparato de Golgi/genética , Aparato de Golgi/parasitología , Humanos , Estadios del Ciclo de Vida/genética , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Fosfoinosítido Fosfatasas/antagonistas & inhibidores , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/antagonistas & inhibidores
9.
PLoS One ; 7(8): e43477, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912882

RESUMEN

Ubiquitin-dependent protein degradation within malarial parasites is a burgeoning field of interest due to several encouraging reports of proteasome inhibitors that were able to confer antimalarial activity. Despite the growing interest in the Plasmodium proteasome system, relatively little investigation has been done to actually characterize the parasite degradation machinery. In this report, we provide an initial biological investigation of the ubiquitylating components of the endoplasmic reticulum-associated degradation (ERAD) system, which is a major pathway in targeting misfolded proteins from the ER to the cytosol for proteasome degradation. We are able to show that the ERAD system is essential for parasite survival and that the putative Plasmodium HRD1 (E3 ubiquitin ligase), UBC (E2 ubiquitin conjugating enzyme) and UBA1 (E1 ubiquitin activating enzyme) are able to mediate in vitro ubiquitylation. Furthermore, by using immunofluorescence, we report that Plasmodium HRD1 localizes to the ER membranes, while the Plasmodium UBC and UBA1 localize to the cytosol. In addition, our gene disruption experiments indicate that the Plasmodium HRD1 is likely essential. We have conducted an initial characterization of the ubiquitylating components of the Plasmodium ERAD system, a major pathway for protein degradation and parasite maintenance. In conjunction with promising proteasome inhibitor studies, we explore the possibility of targeting the Plasmodium ERAD system for future bottom-up drug development approaches.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/parasitología , Interacciones Huésped-Parásitos , Humanos , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Immunoblotting , Malaria/parasitología , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Proteolisis , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
10.
Cell Microbiol ; 14(6): 937-48, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22309219

RESUMEN

Parasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway. This was achieved by targeting the N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that mediate the fusion of early secretory vesicles. In the presence of dominant negative variants of sec22b or some of its known cognate partners, D12 and syntaxin 18, PVs failed to distend and harboured fewer parasites. These observations were confirmed in studies in which each of the SNAREs listed above including the intermediate compartment ER/Golgi SNARE, syntaxin 5, was knocked down. The knock-down of these SNARES had little or no measurable effect on the morphology of the ER or on activated secretion even though they resulted in a more significant reduction of PV size. Moreover, the knock-down of the ER/Golgi SNAREs resulted in significant reduction in parasite replication. Taken together, these studies provide further evidence that PVs acquire ER components by fusing with vesicles derived from the early secretory pathway; disruption of this interaction results in inhibition of the development of PVs as well as the limitation of parasite replication within infected cells.


Asunto(s)
Retículo Endoplásmico/parasitología , Interacciones Huésped-Parásitos , Leishmania/fisiología , Macrófagos/parasitología , Fusión de Membrana , Vacuolas/parasitología , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Técnicas de Silenciamiento del Gen , Membranas Intracelulares/fisiología , Leishmania/crecimiento & desarrollo , Leishmaniasis/parasitología , Ratones , Interferencia de ARN , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vacuolas/metabolismo , Vacuolas/fisiología
11.
J Parasitol ; 97(4): 620-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21506833

RESUMEN

Toxoplasma gondii is an important zoonotic parasite with a worldwide distribution. It infects about one-third of the world's population, causing serious illness in immunosuppressed individuals, fetuses, and infants. Toxoplasma gondii biology within the host cell includes several important phases: (1) active invasion and establishment of a nonfusogenic parasitophorous vacuole in the host cell, (2) extensive modification of the parasitophorous vacuolar membrane for nutrient acquisition, (3) intracellular proliferation by endodyogeny, (4) egress and invasion of new host cells, and (5) stage conversion from tachyzoite to bradyzoite and establishment of chronic infection. During these processes, T. gondii regulates the host cell by modulating morphological, physiological, immunological, genetic, and cellular biological aspects of the host cell. Overall, the infection/development predispositions of T. gondii -host cell interactions overtakes the infection resistance aspects. Upon invasion and development, host cells are modulated to keep a delicate balance between facilitating and eliminating the infection.


Asunto(s)
Toxoplasma/fisiología , Toxoplasmosis/parasitología , Animales , Apoptosis , Ciclo Celular , Citoesqueleto/parasitología , Retículo Endoplásmico/parasitología , Fibroblastos/citología , Fibroblastos/parasitología , Humanos , Inmunocompetencia , Huésped Inmunocomprometido , Mitocondrias/parasitología , Fagocitos/parasitología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Toxoplasmosis/patología , Vacuolas/inmunología , Vacuolas/parasitología , Vacuolas/fisiología
12.
J Biol Chem ; 285(45): 34528-36, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20801889

RESUMEN

Leishmania parasites use polymorphonuclear neutrophils as intermediate hosts before their ultimate delivery to macrophages following engulfment of parasite-infected neutrophils. This leads to a silent and unrecognized entry of Leishmania into the macrophage host cell. Neutrophil function depends on its cytoplasmic granules, but their mobilization and role in how Leishmania parasites evade intracellular killing in neutrophils remain undetermined. Here, we have found by ultrastructural approaches that neutrophils ingested Leishmania major promastigotes, and azurophilic granules fused in a preferential way with parasite-containing phagosomes, without promoting parasite killing. Azurophilic granules, identified by the granule marker myeloperoxidase, also fused with Leishmania donovani-engulfed vacuoles in human neutrophils. In addition, the azurophilic membrane marker CD63 was also detected in the vacuole surrounding the parasite, and in the fusion of azurophilic granules with the parasite-engulfed phagosome. Tertiary and specific granules, involved in vacuole acidification and superoxide anion generation, hardly fused with Leishmania-containing phagosomes. L. major interaction with neutrophils did not elicit production of reactive oxygen species or mobilization of tertiary and specific granules. By using immunogold electron microscopy approaches in the engulfment of L. major and L. donovani by human neutrophils, we did not find a significant contribution of endoplasmic reticulum to the formation of Leishmania-containing vacuoles. Live Leishmania parasites were required to be optimally internalized by neutrophils. Our data suggest that Leishmania promastigotes modulate their uptake by neutrophils, and regulate granule fusion processes in a rather selective way to favor parasite survival in human neutrophils.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Leishmania donovani/metabolismo , Leishmania major/metabolismo , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Visceral/metabolismo , Neutrófilos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/parasitología , Humanos , Fusión de Membrana , Neutrófilos/parasitología , Fagosomas/metabolismo , Fagosomas/parasitología , Vacuolas/metabolismo , Vacuolas/parasitología
13.
Traffic ; 10(10): 1471-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19602198

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite from the phylum Apicomplexa. A hallmark of these protozoans is the presence of a unique apical complex of organelles that includes the apicoplast, a plastid acquired by secondary endosymbiosis. The apicoplast is indispensible for parasite viability. It harbours a fatty acid biosynthesis type II (FAS II) pathway and plays a key role in the parasite lipid metabolism. Possibly, the apicoplast provides components for the establishment and the maturation of the parasitophorous vacuole, ensuring the successful infection of the host cell. This implies the presence of a transport mechanism for fast and accurate allocation of lipids between the apicoplast and other membrane-bound compartments in the parasite cell. Using a combination of high-pressure freezing, freeze-substitution and electron tomography, we analysed the ultrastructural organization of the apicoplast of T. gondii in relation with the endoplasmic reticulum (ER). This allowed us to clearly show the presence of four continuous membranes surrounding the apicoplast. We present, for the first time, the existence of membrane contact sites between the apicoplast outermost membrane and the ER. We describe the morphological characteristics of these structures and discuss their potential significance for the subcellular distribution of lipids in the parasite.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Acido Graso Sintasa Tipo II/biosíntesis , Interacciones Huésped-Parásitos , Membranas Intracelulares/ultraestructura , Orgánulos/ultraestructura , Toxoplasma/ultraestructura , Animales , Transporte Biológico , Chlorocebus aethiops , Crioultramicrotomía , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/parasitología , Ácidos Grasos/biosíntesis , Membranas Intracelulares/metabolismo , Metabolismo de los Lípidos , Modelos Biológicos , Orgánulos/metabolismo , Simbiosis/fisiología , Toxoplasma/enzimología , Toxoplasma/metabolismo , Vacuolas/metabolismo , Vacuolas/parasitología , Vacuolas/ultraestructura , Células Vero
14.
J Mol Cell Cardiol ; 46(2): 225-33, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19027022

RESUMEN

Sarcolemmal Na(+)/H(+) exchanger (NHE) activity, which is provided by the NHE isoform 1 (NHE1), has been implicated in ischemia/reperfusion-induced myocardial injury in animal models and humans, on the basis of studies with pharmacological NHE1 inhibitors. We generated a transgenic (TG) mouse model with cardiac-specific over-expression of NHE1 to determine whether this would be sufficient to increase myocardial susceptibility to ischemia/reperfusion-induced injury. TG mouse hearts exhibited increased sarcolemmal NHE activity and normal morphology and function. Surprisingly, they also showed reduced susceptibility to ischemia/reperfusion-induced injury, as reflected by improved functional recovery and smaller infarcts. Such protection was sustained in the presence of NHE1 inhibition with zoniporide, indicating a mechanism that is independent of sarcolemmal NHE activity. Immunoblot analysis revealed accumulation of immature NHE1 protein as well as marked upregulation of both cytoprotective (78/94 kDa glucose-regulated proteins, calreticulin, protein disulfide isomerase) and pro-apoptotic (C/EBP homologous protein) components of the endoplasmic reticulum (ER) stress response in TG myocardium. With increasing age, NHE1 TG mice exhibited increased myocyte apoptosis, developed left ventricular contractile dysfunction, underwent cardiac remodelling and died prematurely. Our findings indicate that: (1) Cardiac-specific NHE1 over-expression induces the ER stress response in mouse myocardium, which may afford protection against ischemia/reperfusion-induced injury despite increased NHE activity; (2) Ageing NHE1 TG mice exhibit myocyte apoptosis, cardiac remodelling and failure, likely as a result of sustained ER stress; (3) The pluripotent effects of the ER stress response may confound studies that are based on the chronic over-expression of complex proteins in myocardium.


Asunto(s)
Cardiomiopatías/prevención & control , Retículo Endoplásmico/parasitología , Isquemia Miocárdica/prevención & control , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Apoptosis , Cardiomiopatías/genética , Retículo Endoplásmico/patología , Guanidinas/farmacología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/prevención & control , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células Musculares/citología , Células Musculares/efectos de los fármacos , Isquemia Miocárdica/genética , Pirazoles/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
15.
Infect Immun ; 76(11): 4883-94, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18765738

RESUMEN

Toxoplasma gondii is a common central nervous system infection in individuals with immunocompromised immune systems, such as AIDS patients. Gamma interferon (IFN-gamma) is the main cytokine mediating protection against T. gondii. Our previous studies found that IFN-gamma significantly inhibits T. gondii in astrocytes via an IFN-gamma-inducible GTP-binding protein (IGTP)-dependent mechanism. The IGTP-dependent-, IFN-gamma-stimulated inhibition is not understood, but recent studies found that IGTP induces disruption of the parasitophorous vacuole (PV) in macrophages. In the current study, we have further investigated the mechanism of IFN-gamma inhibition and the role of IGTP in the vacuolar disruption in murine astrocytes. Vacuolar disruption was found to be dependent upon IGTP, as PV disruption was not observed in IGTP-deficient (IGTP(-/-)) astrocytes and PV disruption could be induced in IGTP(-/-) astrocytes transfected with IGTP. Live-cell imaging studies using green fluorescent protein-IGTP found that IGTP is delivered to the PV via the host cell endoplasmic reticulum (ER) early after invasion and that IGTP condenses into vesicle-like structures on the vacuole just prior to PV disruption, suggesting that IGTP is involved in PV disruption. Intravacuolar movement of the parasite occurred just prior to PV disruption. In some instances, IFN-gamma induced parasite egression. Electron microscopy and immunofluorescence studies indicate that the host cell ER fuses with the PV prior to vacuolar disruption. On the basis of these results, we postulate a mechanism by which ER/PV fusion is a crucial event in PV disruption. Fusion of the ER with the PV, releasing calcium into the vacuole, may also be the mechanism by which intravacuolar parasite movement and IFN-gamma-induced parasite egression occur.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/parasitología , GTP Fosfohidrolasas/metabolismo , Interferón gamma/metabolismo , Toxoplasmosis Animal/metabolismo , Vacuolas/parasitología , Animales , Astrocitos/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/ultraestructura , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Parásitos , Interferón gamma/inmunología , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Toxoplasma/fisiología , Toxoplasmosis Animal/inmunología , Toxoplasmosis Animal/patología , Vacuolas/metabolismo , Vacuolas/ultraestructura
16.
Cell Microbiol ; 10(2): 465-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17970763

RESUMEN

The obligate intracellular parasite Toxoplasma develops within a parasitophorous vacuole (PV) uniquely adapted for its survival in mammalian cells. Post-invasion events extensively modify the PV, resulting in interactions with host cell structures. Recent studies emphasized that Toxoplasma is able to co-opt host gene expression, suggesting that host transcriptional activities are required for parasite infection. By using an experimental enucleation model, we investigated the potential need for Toxoplasma to modify its PV by modulating gene expression in the cell wherein it resides. Unexpectedly, cytoplasts can be actively invaded by Toxoplasma and sustain its replication inside a vacuole until egress and transmission to neighbouring cells. Although randomly distributed in the cytoplast, the PV associates with host centrosomes and the Golgi, is surrounded by host microtubules, and recruits host endoplasmic reticulum and mitochondria. Parasites are proficient in diverting exogenous nutrients from the endocytic network of cytoplasts. In enucleated cells invaded by an avirulent strain of T. gondii, the PV can normally transform into cysts. These observations suggest that new host nuclear functions are not proximately required for the post-invasion events underlying the remodelling of the host cell in which the parasites are confined, and therefore for the generation of infectious parasites in vitro.


Asunto(s)
Núcleo Celular/fisiología , Toxoplasma/patogenicidad , Vacuolas/parasitología , Animales , Línea Celular , Núcleo Celular/parasitología , Centrosoma/parasitología , Centrosoma/ultraestructura , Chlorocebus aethiops , LDL-Colesterol/metabolismo , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/ultraestructura , Regulación de la Expresión Génica , Aparato de Golgi/parasitología , Aparato de Golgi/ultraestructura , Interacciones Huésped-Parásitos , Humanos , Microtúbulos/parasitología , Microtúbulos/ultraestructura , Mitocondrias/parasitología , Mitocondrias/ultraestructura , Porcinos , Toxoplasma/fisiología , Toxoplasma/ultraestructura , Transcripción Genética
17.
Nat Rev Immunol ; 6(2): 136-47, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16491138

RESUMEN

A key determinant for the survival of intracellular pathogens is their ability to subvert the cellular processes of the host to establish a compartment that allows replication. Although most microorganisms internalized by host cells are efficiently cleared following fusion with lysosomes, many pathogens have evolved mechanisms to escape this degradation. In this Review, we provide insight into the molecular processes that are targeted by pathogens that interact with the endoplasmic reticulum and thereby subvert the immune response, ensure their survival intracellularly and cause disease. We also discuss how the endoplasmic reticulum 'strikes back' and controls microbial growth.


Asunto(s)
Bacterias/patogenicidad , Retículo Endoplásmico/inmunología , Inmunidad Celular , Fagocitos/inmunología , Toxoplasma/patogenicidad , Virus/patogenicidad , Animales , Bacterias/inmunología , Retículo Endoplásmico/microbiología , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/virología , Humanos , Toxoplasma/inmunología , Virus/inmunología
18.
Trends Parasitol ; 20(12): 581-9, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15522668

RESUMEN

Plasmodium falciparum inhabits a niche within the most highly terminally differentiated cell in the human body--the mature red blood cell. Life inside this normally quiescent cell offers the parasite protection from the host's immune system, but provides little in the way of cellular infrastructure. To survive and replicate in the red blood cell, the parasite exports proteins that interact with and dramatically modify the properties of the host red blood cell. As part of this process, the parasite appears to establish a system within the red blood cell cytosol that allows the correct trafficking of parasite proteins to their final cellular destinations. In this review, we examine recent developments in our understanding of the pathways and components involved in the delivery of important parasite-encoded proteins to their final destination in the host red blood cell. These complex processes are not only fundamental to the survival of malaria parasites in vivo, but are also major determinants of the unique pathogenicity of this parasite.


Asunto(s)
Eritrocitos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/parasitología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/parasitología , Eritrocitos/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/parasitología , Humanos , Malaria Falciparum/parasitología , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/parasitología
19.
Cell Microbiol ; 4(2): 117-26, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11896767

RESUMEN

A gene for a Ca2+-transporting ATPase (lmaa1) from the trypanosomatid parasite Leishmania (mexicana) amazonensis was overexpressed in two clones of L. amazonensis differing in their virulence. RNA and protein expression of the gene was increased in transfectants, as was the infectivity of transfectants versus parental types in both mouse and in vitro macrophage infection experiments. The virulence of the almost avirulent clone was enhanced such that it was more virulent than the parental 'virulent' clone. Growth of the parasites in culture as promastigotes, after isolation from mouse lesions, indicated that transfection led to improved survival of promastigotes during the stationary phase of culture. As it is in this culture phase that infective metacyclic forms develop, the key role of the Lmaa1 protein may be in metacyclogenesis. The protein may be important in the synthesis and trafficking of new proteins through the secretory pathway, as we demonstrate, using a green fluorescent protein hybrid and by immunofluorescence, that the Lmaa1 protein is located in the endoplasmic reticulum in promastigotes and amastigotes of L. amazonensis.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Leishmania mexicana/metabolismo , Leishmania mexicana/patogenicidad , Leishmaniasis Cutánea/parasitología , Animales , ATPasas Transportadoras de Calcio/genética , Línea Celular , Retículo Endoplásmico/parasitología , Femenino , Expresión Génica , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Transfección , Virulencia
20.
Parasitol Res ; 85(5): 349-55, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10227053

RESUMEN

Little is known about how the malaria parasite transports and targets proteins into the host erythrocyte. Parasite proteins exported into the host cell not only have to cross the parasite plasma membrane but also must traverse the parasitophorous vacuolar membrane (PVM) that surrounds the parasite. The PVM of Plasmodium chabaudi-infected erythrocytes was analyzed by immunofluorescence using an antibody against a known PVM protein, a fluorescent lipid probe, and electron microscopy. These analyses reveal qualitatively different membranous projections from the PVM. Some PVM projections are uniformly labeled with the antibody and with lipid probes and probably correspond to the Maurer's clefts. In contrast to this uniform labeling of the PVM and projections, a 93-kDa P. chabaudi erythrocyte membrane-associated protein is occasionally detected in vesicle-like structures adjacent to the parasite. These vesicle-like structures are found only coincident with protein synthesis and are located at discrete sites on the PVM. These observations suggest that the 93-kDa protein does not move along the membranous projections of the PVM toward the erythrocyte membrane. It is proposed that the 93-kDa protein is secreted directly into the erythrocyte cytoplasm at discrete PVM domains and then binds to the cytoplasmic face of the erythrocyte membrane.


Asunto(s)
Eritrocitos/parasitología , Plasmodium chabaudi/metabolismo , Proteínas Protozoarias/metabolismo , Vacuolas/parasitología , Animales , Membrana Celular/metabolismo , Membrana Celular/parasitología , Retículo Endoplásmico/parasitología , Eritrocitos/ultraestructura , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Parásitos , Malaria/parasitología , Malaria/patología , Microscopía Electrónica , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...