Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 198: 106125, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35659600

RESUMEN

The Type I Interferon cytokine family member, Interferon-α2b (hIFN-α2b), modulates a number of important biological mechanisms including anti-proliferation, immunoregulation and antiviral responses. Due to its role in the immune system, hIFN-α2b has been used as a therapeutic modulator in hepatitis C as well as some forms of leukaemia. Clinical grade hIFN-α2b is typically produced in bacterial expression systems that involves complex refolding protocols and subsequent loss of yields. In this study, we describe an expression and purification system for hIFN-α2b from mammalian cells. Application of the Trypsin-1 signal peptide-propeptide domain significantly improved the expression and secretion of hIFN-α2b from HEK293 cells. We established a simple purification strategy that yields homogenous, pure hIFN-α2b that is stable and biologically active.


Asunto(s)
Interferón-alfa , Señales de Clasificación de Proteína , Animales , Células HEK293 , Humanos , Interferón alfa-2/genética , Interferón-alfa/química , Interferón-alfa/genética , Mamíferos , Proteínas Recombinantes
2.
Biochem J ; 478(19): 3527-3537, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523671

RESUMEN

We have been developing bacterial expression systems for human mucin-type O-glycosylation on therapeutic proteins, which is initiated by the addition of α-linked GalNAc to serine or threonine residues by enzymes in the GT-27 family of glycosyltransferases. Substrate preference across different isoforms of this enzyme is influenced by isoform-specific amino acid sequences at the site of glycosylation, which we have exploited to engineer production of Core 1 glycan structures in bacteria on human therapeutic proteins. Using RP-HPLC with a novel phenyl bonded phase to resolve intact protein glycoforms, the effect of sequon mutation on O-glycosylation initiation was examined through in vitro modification of the naturally O-glycosylated human interferon α-2b, and a sequon engineered human growth hormone. As part of the development of our glycan engineering in the bacterial expression system we are surveying various orthologues of critical enzymes to ensure complete glycosylation. Here we present an in vitro enzyme kinetic profile of three related GT-27 orthologues on natural and engineered sequons in recombinant human interferon α2b and human growth hormone where we show a significant change in kinetic properties with the amino acid changes. It was found that optimizing the protein substrate amino acid sequence using Isoform Specific O-Glycosylation Prediction (ISOGlyP, http://isoglyp.utep.edu/index.php) resulted in a measurable increase in kcat/KM, thus improving glycosylation efficiency. We showed that the Drosophila orthologue showed superior activity with our human growth hormone designed sequons compared with the human enzyme.


Asunto(s)
Hormona de Crecimiento Humana/metabolismo , Interferón alfa-2/metabolismo , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/metabolismo , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Dominio Catalítico , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosilación , Hormona de Crecimiento Humana/genética , Humanos , Interferón alfa-2/genética , Isoenzimas/metabolismo , Cinética , Mucinas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Serina/metabolismo , Biología Sintética/métodos , Treonina/química , Polipéptido N-Acetilgalactosaminiltransferasa
3.
Lancet Oncol ; 22(1): 107-117, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253641

RESUMEN

BACKGROUND: BCG is the most effective therapy for high-risk non-muscle-invasive bladder cancer. Nadofaragene firadenovec (also known as rAd-IFNa/Syn3) is a replication-deficient recombinant adenovirus that delivers human interferon alfa-2b cDNA into the bladder epithelium, and a novel intravesical therapy for BCG-unresponsive non-muscle-invasive bladder cancer. We aimed to evaluate its efficacy in patients with BCG-unresponsive non-muscle-invasive bladder cancer. METHODS: In this phase 3, multicentre, open-label, repeat-dose study done in 33 centres (hospitals and clinics) in the USA, we recruited patients aged 18 years or older, with BCG-unresponsive non-muscle-invasive bladder cancer and an Eastern Cooperative Oncology Group status of 2 or less. Patients were excluded if they had upper urinary tract disease, urothelial carcinoma within the prostatic urethra, lymphovascular invasion, micropapillary disease, or hydronephrosis. Eligible patients received a single intravesical 75 mL dose of nadofaragene firadenovec (3 × 1011 viral particles per mL). Repeat dosing at months 3, 6, and 9 was done in the absence of high-grade recurrence. The primary endpoint was complete response at any time in patients with carcinoma in situ (with or without a high-grade Ta or T1 tumour). The null hypothesis specified a complete response rate of less than 27% in this cohort. Efficacy analyses were done on the per-protocol population, to include only patients strictly meeting the BCG-unresponsive definition. Safety analyses were done in all patients who received at least one dose of treatment. The study is ongoing, with a planned 4-year treatment and monitoring phase. This study is registered with ClinicalTrials.gov, NCT02773849. FINDINGS: Between Sept 19, 2016, and May 24, 2019, 198 patients were assessed for eligibility. 41 patients were excluded, and 157 were enrolled and received at least one dose of the study drug. Six patients did not meet the definition of BCG-unresponsive non-muscle-invasive bladder cancer and were therefore excluded from efficacy analyses; the remaining 151 patients were included in the per-protocol efficacy analyses. 55 (53·4%) of 103 patients with carcinoma in situ (with or without a high-grade Ta or T1 tumour) had a complete response within 3 months of the first dose and this response was maintained in 25 (45·5%) of 55 patients at 12 months. Micturition urgency was the most common grade 3-4 study drug-related adverse event (two [1%] of 157 patients, both grade 3), and there were no treatment-related deaths. INTERPRETATION: Intravesical nadofaragene firadenovec was efficacious, with a favourable benefit:risk ratio, in patients with BCG-unresponsive non-muscle-invasive bladder cancer. This represents a novel treatment option in a therapeutically challenging disease state. FUNDING: FKD Therapies Oy.


Asunto(s)
Adenoviridae/genética , Vacuna BCG/administración & dosificación , Carcinoma in Situ/terapia , Resistencia a Antineoplásicos , Terapia Genética , Vectores Genéticos , Interferón alfa-2/genética , Neoplasias de la Vejiga Urinaria/terapia , Administración Intravesical , Anciano , Vacuna BCG/efectos adversos , Carcinoma in Situ/genética , Carcinoma in Situ/mortalidad , Carcinoma in Situ/patología , Progresión de la Enfermedad , Femenino , Terapia Genética/efectos adversos , Terapia Genética/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/patología
4.
Front Immunol ; 11: 580412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117386

RESUMEN

Interferons are secretory proteins induced in response to specific extracellular stimuli which stimulate intra- and intercellular networks for regulating innate and acquired immunity, resistance to viral infections, and normal and tumor cell survival and death. Type 1 interferons plays a major role in the CD8 T-cell response to viral infection. The genomic analysis carried out here for type I interferons within Bovidae family shows that cattle, bison, water buffalo, goat, and sheep (all Bovidae), have different number of genes of the different subtypes, with a large increase in the numbers, compared to human and mouse genomes. A phylogenetic analysis of the interferon alpha (IFNA) proteins in this group shows that the genes do not follow the evolutionary pattern of the species, but rather a cycle of duplications and deletions in the different species. In this study we also studied the genetic diversity of the bovine interferon alpha A (IFNAA), as an example of the IFNA genes in cattle, sequencing a fragment of the coding sequence in 18 breeds of cattle from Pakistan, Nigeria and USA. Similarity analysis allowed the allocation of sequences into 22 haplotypes. Bhagnari, Brangus, Sokoto Gudali, and White Fulani, had the highest number of haplotypes, while Angus, Hereford and Nari Master had the least. However, when analyzed by the average haplotype count, Angus, Bhagnari, Hereford, Holstein, Muturu showed the highest values, while Cholistani, Lohani, and Nari Master showed the lowest values. Haplotype 4 was found in the highest number of individuals (74), and in 15 breeds. Sequences for yak, bison, and water buffalo, were included within the bovine haplotypes. Medium Joining network showed that the sequences could be divided into 4 groups: one with highly similar haplotypes containing mostly Asian and African breeds, one with almost all of the Bos taurus American breeds, one mid-diverse group with mostly Asian and African sequences, and one group with highly divergent haplotypes with five N'Dama sequences and one from each of White Fulani, Dhanni, Tharparkar, and Bhagnari. The large genetic diversity found in IFNAA could be a very good indication of the genetic variation among the different genes of IFNA and could be an adaptation for these species in response to viral challenges they face.


Asunto(s)
Genotipo , Interferón alfa-2/genética , Animales , Evolución Biológica , Bison , Búfalos , Bovinos , Evolución Molecular , Variación Genética , Cabras , Haplotipos , Fenotipo , Filogenia , Ovinos
5.
J Cell Mol Med ; 24(18): 10803-10815, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757451

RESUMEN

Some studies suggested the prognosis value of immune gene in lower grade glioma (LGG). Recurrence in LGG is a tough clinical problem for many LGG patients. Therefore, prognosis biomarker is required. Multivariate prognosis Cox model was constructed and then calculated the risk score. And differential expressed transcription factors (TFs) and differential expressed immune genes (DEIGs) were co-analysed. Besides, significant immune cells/pathways were identified by single sample gene set enrichment analysis (ssGSEA). Moreover, gene set variation analysis (GSVA) and univariate Cox regression were applied to filter prognostic signalling pathways. Additionally, significant DEIG and immune cells/pathways, and significant DEIG and pathways were co-analysed. Further, differential enriched pathways were identified by GSEA. In sum, a scientific hypothesis for recurrence LGG including TF, immune gene and immune cell/pathway was established. In our study, a total of 536 primary LGG samples, 2,498 immune genes and 318 TFs were acquired. Based on edgeR method, 2,164 DEGs, 2,498 DEIGs and 31 differentials expressed TFs were identified. A total of 106 DEIGs were integrated into multivariate prognostic model. Additionally, the AUC of the ROC curve was 0.860, and P value of Kaplan-Meier curve < 0.001. GATA6 (TF) and COL3A1 (DEIG) were selected (R = 0.900, P < 0.001, positive) as significant TF-immune gene links. Type II IFN response (P < 0.001) was the significant immune pathway. Propanoate metabolism (P < 0.001) was the significant KEGG pathway. We proposed that COL3A1 was positively regulated by GATA6, and by effecting type II IFN response and propanoate metabolism, COL3A1 involved in LGG recurrence.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Colágeno Tipo III/fisiología , Factor de Transcripción GATA6/fisiología , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Interferón alfa-2/biosíntesis , Proteínas de Neoplasias/fisiología , Recurrencia Local de Neoplasia/metabolismo , Propionatos/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Femenino , Redes Reguladoras de Genes , Glioma/genética , Glioma/inmunología , Glioma/patología , Humanos , Interferón alfa-2/genética , Masculino , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Persona de Mediana Edad , Clasificación del Tumor , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/patología , Pronóstico , Modelos de Riesgos Proporcionales , Riesgo , Adulto Joven
6.
Biotechnol Prog ; 36(3): e2971, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31990134

RESUMEN

Real-time monitoring of glycoengineered Pichia pastoris by employing process analytical technology (PAT) tools is vital for gaining deeper insights into the therapeutic protein production process. The present study focuses on influence of mixed feed carbon substrates during the induction phases of glycoengineered P. pastoris cultivation, for recombinant human interferon α2b (huIFNα2b) production by employing calorimetric (biological heat rate, q B ) and respirometric (oxygen uptake rate and carbon dioxide evolution rate) measurements. Mixed feed stream of carbon substrates (methanol + glycerol, methanol + sorbitol) at a predetermined "C-molar ratios" were added during the induction phases. Methanol- and sorbitol-based mixed feeding approach resulted in an improved huIFNα2b titer of 288 mg/L by channeling of methanol predominantly towards an optimal functioning of AOX expression system. A stand-off between biomass yield YXSand biomass heat yieldYQX coefficient, degree of reduction of methanol and its cosubstrate (glycerol and sorbitol) determines the fraction of carbon energy channeled toward biomass and protein production, under strict aerobic conditions. Calorespirometric monitoring and assessment of thermal yields enables a reliable prediction of process variables, leading to futuristic efficient PAT-based feed rate control.


Asunto(s)
Calorimetría , Interferón alfa-2/biosíntesis , Ingeniería de Proteínas , Saccharomycetales/genética , Reactores Biológicos , Glicerol/farmacología , Humanos , Interferón alfa-2/genética , Interferón alfa-2/aislamiento & purificación , Metanol/farmacología , Sorbitol/farmacología
7.
Sci Rep ; 9(1): 10867, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350425

RESUMEN

Interferon therapy for the treatment of hepatitis C virus infection has very limited clinical application due to short serum half-life and side effects of therapy in systemic route of administration. In the present study, we have focused to improve the interferon therapy by overcoming the limitation of side effects. We hypothesized that latent interferon alpha 2b (IFNα2b) produced by fusion of Latency associated protein (LAP) domain of TGFß and IFNα2b having HCV NS3 protease cleavage site as linker that will be activated only at target site (liver) by viral protease (HCV NS3 protease) present on the surface of infected cells. The fusion proteins were expressed in pichia pastoris as homodimer and cleaved by recombinant HCV NS3 protease in vitro into two fragments corresponding to the IFNα-2b and LAP respectively. The latency of chimeric proteins and biological activity after treatment with HCV NS3 protease was assessed by cytopathic effect inhibition assay in A594 cells infected with encephalomyocarditis virus (EMCV) and reduction in HCV viral load in Huh7 cells. The HCV NS3 protease was present on the surface of HCV replicating Huh7 cells in amount that activated half of the effective concentration (EC50) of latent IFNα2b fusion protein. As free circulating HCV NS3 protease was not detected in sera from chronic HCV patients and in vitro cleavage of intact latent IFNα2b fusion protein was not observed with peripheral blood mononuclear cells (PBMCs) isolated from chronic HCV patients, thus there are less likely chances of activation and off target binding of latent IFNα2b to show side effects during systemic route of administration. Therefore, most of the side effects of interferon can be overwhelmed at the cost of 50% reduced biological activity. Thus, the use of latent IFNα2b can be considered again as an option for treatment of HCV infection in combination with direct acting antivirals rather than alone with improved safety profile.


Asunto(s)
Diseño de Fármacos , Hepacivirus/enzimología , Hepatitis C Crónica/metabolismo , Interferón alfa-2/farmacología , Proteínas Recombinantes de Fusión/farmacología , Antivirales/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Femenino , Hepatitis C Crónica/virología , Humanos , Interferón alfa-2/genética , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Masculino , Péptidos/genética , Pichia/genética , Pichia/metabolismo , Plásmidos/genética , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Crecimiento Transformador beta/genética , Carga Viral/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
8.
Science ; 363(6433): 1319-1326, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30765607

RESUMEN

In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.


Asunto(s)
Adaptación Biológica/genética , Inmunidad Innata/genética , Myxoma virus/inmunología , Mixomatosis Infecciosa/inmunología , Conejos/genética , Conejos/virología , Alelos , Animales , Australia , Evolución Molecular , Francia , Frecuencia de los Genes , Variación Genética , Interferón alfa-2/genética , Interferón alfa-2/inmunología , Mixomatosis Infecciosa/genética , Polimorfismo de Nucleótido Simple , Población , Conejos/inmunología , Reino Unido
9.
J Appl Microbiol ; 126(5): 1438-1453, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30776176

RESUMEN

AIMS: The present study was aimed at design of experiments (DoE)- and artificial intelligence-based culture medium optimization for high level extracellular production of a novel recombinant human interferon alpha 2b (huIFNα2b) in glycoengineered Pichia pastoris and its characterization. METHODS AND RESULTS: The artificial neural network-genetic algorithm model exhibited improved huIFNα2b production and better predictability compared to response surface methodology. The optimized medium exhibited a fivefold increase in huIFNα2b titre compared to the complex medium. A maximum titre of huIFNα2b (436 mg l-1 ) was achieved using the optimized medium in the bioreactor. Real-time capacitance data from dielectric spectroscopy were utilized to model the growth kinetics with unstructured models. Biological characterization by antiproliferative assay proved that the purified recombinant huIFNα2b was biologically active, exhibiting growth inhibition on breast cancer cell line. CONCLUSIONS: Culture medium optimization resulted in enhanced production of huIFNα2b in glycoengineered P. pastoris at both shake flask and bioreactor level. The purified huIFNα2b was found to be N-glycosylated and biologically active. SIGNIFICANCE AND IMPACT OF THE STUDY: DoE-based medium optimization strategy significantly improved huIFNα2b production. The antiproliferative activity of huIFNα2b substantiates its potential scope for application in cancer therapy.


Asunto(s)
Reactores Biológicos/microbiología , Interferón alfa-2 , Pichia , Proteínas Recombinantes , Recuento de Células , Simulación por Computador , Medios de Cultivo , Humanos , Interferón alfa-2/análisis , Interferón alfa-2/genética , Interferón alfa-2/aislamiento & purificación , Interferón alfa-2/metabolismo , Pichia/genética , Pichia/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
10.
Mol Biotechnol ; 61(2): 134-144, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30543053

RESUMEN

Human interferon (IFN) are secreted cytokines that play a major regulatory role in response to various infections. Commercially, IFN-α has been approved to treat many chronic viral diseases as well as a variety of cancers and different types of leukemia. In this study, a binary vector containing human IFN-α2a gene under the regulation of the cauliflower mosaic virus 35S promoter was constructed. IFN-œ2a expression cassette was transferred to Chlamydomonas reinhardtii cells via Agrobacterium-mediated transformation method. Three independent transgenic C. reinhartii lines were generated and reported to produce a biologically active IFN-œ2a. The expressed IFN-œ2a was partially purified and tested for their antitumor and antiviral properties. Cytotoxicity and cell apoptosis assays involving the usage of the recombinant C. reinhardtii IFN-œ2a (Cr. IFN-œ2a) against the growth of Hep-G2 cells (human hepatocellular carcinoma), EAC-induced tumors (Ehrlich Ascites Carcinoma) in mice prove the functionality of the produced IFN-œ2a as an anticancer drug. Moreover, Cr.IFN-œ2a is shown to have significant inhibitory effects on the propagation of the vesicular stomatitis virus (VSV). The overall observed results support the application of C. reinhardtii expression system as a cost effective, eco-friendly, safe, and easy to employ compared to plant, bacterial and animal cell culture systems.


Asunto(s)
Antineoplásicos/farmacología , Antivirales/farmacología , Chlamydomonas reinhardtii/genética , Ingeniería Genética , Interferón alfa-2/genética , Interferón alfa-2/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Chlamydomonas reinhardtii/metabolismo , Expresión Génica , Humanos , Masculino , Ratones , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Replicación Viral/efectos de los fármacos
11.
Cell Chem Biol ; 26(2): 203-212.e5, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30503285

RESUMEN

We have developed an Escherichia coli strain for the in vivo production of O-glycosylated proteins. This was achieved using a dual plasmid approach: one encoding a therapeutic protein target, and a second encoding the enzymatic machinery required for O-glycosylation. The latter plasmid encodes human polypeptide N-acetylgalactosaminyl transferase as well as a ß1,3-galactosyl transferase and UDP-Glc(NAc)-4-epimerase, both from Campylobacter jejuni, and a disulfide bond isomerase of bacterial or human origin. The effectiveness of this two-plasmid synthetic operon system has been tested on three proteins with therapeutic potential: the native and an engineered version of the naturally O-glycosylated human interferon α-2b, as well as human growth hormone with one engineered site of glycosylation. Having established proof of principle for the addition of the core-1 glycan onto proteins, we are now developing this system as a platform for producing and modifying human protein therapeutics with more complex O-glycan structures in E. coli.


Asunto(s)
Hormona del Crecimiento/metabolismo , Interferón alfa-2/metabolismo , Polisacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/enzimología , Escherichia coli/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicosilación , Hormona del Crecimiento/genética , Humanos , Interferón alfa-2/genética , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
12.
J Exp Med ; 215(10): 2567-2585, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143481

RESUMEN

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.


Asunto(s)
Alelos , Homocigoto , Gripe Humana , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Orthomyxoviridae/inmunología , Neumonía Viral , Femenino , Humanos , Lactante , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/patología , Interferón alfa-2/genética , Interferón alfa-2/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Neumonía Viral/genética , Neumonía Viral/inmunología , Neumonía Viral/patología
13.
Bioorg Chem ; 76: 294-302, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29223806

RESUMEN

We have previously shown that human interferon α-2b (IFN) produced in Escherichia coli (E. coli) is heterogeneous at the N-terminal, with three major species (Ahsan et al., 2014). These are: (a) the direct translation product of the gene retaining the N-terminal methionine, (b) a species from which the methionyl residue has been removed by E. coli methionyl aminopeptidase to give the native interferon α-2b and (c) in which the N-terminal Cys residue of the latter contains an acetyl group. In this paper we overcome this heterogeneity, using engineered interferon derivatives with phenylalanine residue directly downstream of the N-terminal methionine (Met-Phe-IFN). This modification not only prevented the removal of the N-terminal methionine by E. coli methionyl aminopeptidase but also the subsequent N-acetylation. Critically, Met-Phe-IFN had enhanced activity in a biological assay. N-terminal stabilization was also achieved by fusing human cytochrome b5 at the N-terminal of interferon (b5-IFN-chimera). In this case also, the protein was more active than a reciprocal chimera with cytochrome b5 at the C-terminal of interferon (Met-IFN-b5-chimera). This latter protein also had a heterogeneous N-terminal but addition of phenylalanine following Met, (Met-Phe-IFN-b5-chimera), resolved this problem and gave enhanced biological activity.


Asunto(s)
Citocromos b5/metabolismo , Escherichia coli/metabolismo , Interferón alfa-2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Acetilación , Antivirales/farmacología , Línea Celular Tumoral , Citocromos b5/farmacología , Escherichia coli/genética , Humanos , Interferón alfa-2/genética , Interferón alfa-2/farmacología , Metionina/metabolismo , Mutación , Fenilalanina/metabolismo , Dominios Proteicos , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA