Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(7)2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203149

RESUMEN

Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses.


Asunto(s)
Antivirales/farmacología , Arenavirus/efectos de los fármacos , Lujo virus/efectos de los fármacos , Animales , Infecciones por Arenaviridae/tratamiento farmacológico , Infecciones por Arenaviridae/virología , Arenavirus/fisiología , Línea Celular Tumoral , Chlorocebus aethiops , Genoma Viral , Proteínas Fluorescentes Verdes/genética , Humanos , Lujo virus/genética , Lujo virus/fisiología , Pruebas de Sensibilidad Microbiana , Proteínas Recombinantes , Células Vero , Internalización del Virus/efectos de los fármacos
2.
Nat Microbiol ; 3(10): 1153-1160, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150732

RESUMEN

Lujo virus (LUJV) has emerged as a highly fatal human pathogen. Despite its membership among the Arenaviridae, LUJV does not classify with the known Old and New World groups of that viral family. Likewise, LUJV was recently found to use neuropilin-2 (NRP2) as a cellular receptor instead of the canonical receptors used by Old World and New World arenaviruses. The emergence of a deadly pathogen into human populations using an unprecedented entry route raises many questions regarding the mechanism of cell recognition. To provide the basis for combating LUJV in particular, and to increase our general understanding of the molecular changes that accompany an evolutionary switch to a new receptor for arenaviruses, we used X-ray crystallography to reveal how the GP1 receptor-binding domain of LUJV (LUJVGP1) recognizes NRP2. Structural data show that LUJVGP1 is more similar to Old World than to New World arenaviruses. Structural analysis supported by experimental validation further suggests that NRP2 recognition is metal-ion dependent and that the complete NRP2 binding site is formed in the context of the trimeric spike. Taken together, our data provide the mechanism for the cell attachment step of LUJV and present indispensable information for combating this phatogen.


Asunto(s)
Lujo virus/química , Neuropilina-2/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Distroglicanos/metabolismo , Células HEK293 , Humanos , Lujo virus/metabolismo , Lujo virus/fisiología , Mutación , Unión Proteica , Dominios Proteicos , Proteínas del Envoltorio Viral/genética , Acoplamiento Viral
3.
Cell Host Microbe ; 22(5): 688-696.e5, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29120745

RESUMEN

Arenaviruses cause fatal hemorrhagic disease in humans. Old World arenavirus glycoproteins (GPs) mainly engage α-dystroglycan as a cell-surface receptor, while New World arenaviruses hijack transferrin receptor. However, the Lujo virus (LUJV) GP does not cluster with New or Old World arenaviruses. Using a recombinant vesicular stomatitis virus containing LUJV GP as its sole attachment and fusion protein (VSV-LUJV), we demonstrate that infection is independent of known arenavirus receptor genes. A genome-wide haploid genetic screen identified the transmembrane protein neuropilin 2 (NRP2) and tetraspanin CD63 as factors for LUJV GP-mediated infection. LUJV GP binds the N-terminal domain of NRP2, while CD63 stimulates pH-activated LUJV GP-mediated membrane fusion. Overexpression of NRP2 or its N-terminal domain enhances VSV-LUJV infection, and cells lacking NRP2 are deficient in wild-type LUJV infection. These findings uncover this distinct set of host cell entry factors in LUJV infection and are attractive focus points for therapeutic intervention.


Asunto(s)
Lujo virus/fisiología , Neuropilina-2/metabolismo , Tetraspanina 30/metabolismo , Proteínas Virales de Fusión/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Proteínas Portadoras , Línea Celular , Interacciones Huésped-Patógeno/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lujo virus/genética , Lujo virus/patogenicidad , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/metabolismo , Receptores de Transferrina , Proteínas Virales de Fusión/genética , Proteínas Virales/genética
4.
J Virol ; 90(2): 705-14, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512085

RESUMEN

UNLABELLED: Arenaviruses are emerging viruses including several causative agents of severe hemorrhagic fevers in humans. The advent of next-generation sequencing technology has greatly accelerated the discovery of novel arenavirus species. However, for many of these viruses, only genetic information is available, and their zoonotic disease potential remains unknown. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P appears, therefore, to be a requirement for efficient zoonotic transmission and human disease potential. Here we implement a newly developed cell-based molecular sensor for SKI-1/S1P to characterize the processing of arenavirus GPC-derived target sequences by human SKI-1/S1P in a quantitative manner. We show that only nine amino acids flanking the putative cleavage site are necessary and sufficient to accurately recapitulate the efficiency and subcellular location of arenavirus GPC processing. In a proof of concept, our sensor correctly predicts efficient processing of the GPC of the newly emergent pathogenic Lujo virus by human SKI-1/S1P and defines the exact cleavage site. Lastly, we employed our sensor to show efficient GPC processing of a panel of pathogenic and nonpathogenic New World arenaviruses, suggesting that GPC cleavage represents no barrier for zoonotic transmission of these pathogens. Our SKI-1/S1P sensor thus represents a rapid and robust test system for assessment of the processing of putative cleavage sites derived from the GPCs of newly discovered arenavirus by the SKI-1/S1P of humans or any other species, based solely on sequence information. IMPORTANCE: Arenaviruses are important emerging human pathogens that can cause severe hemorrhagic fevers with high mortality in humans. A crucial step in productive arenavirus infection of human cells is the processing of the viral envelope glycoprotein by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). In order to break the species barrier during zoonotic transmission and cause severe disease in humans, newly emerging arenaviruses must be able to hijack human SKI-1/S1P efficiently. Here we implement a newly developed cell-based molecular sensor for human SKI-1/S1P to characterize the processing of arenavirus glycoproteins in a quantitative manner. We further use our sensor to correctly predict efficient processing of the glycoprotein of the newly emergent pathogenic Lujo virus by human SKI-1/S1P. Our sensor thus represents a rapid and robust test system with which to assess whether the glycoprotein of any newly emerging arenavirus can be efficiently processed by human SKI-1/S1P, based solely on sequence information.


Asunto(s)
Glicoproteínas/metabolismo , Lujo virus/fisiología , Proproteína Convertasas/metabolismo , Procesamiento Proteico-Postraduccional , Serina Endopeptidasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Humanos , Técnicas de Sonda Molecular
5.
J Virol ; 90(6): 3257-61, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26719243

RESUMEN

The recently identified arenavirus Lujo virus (LUJV) causes fatal hemorrhagic fever in humans. We analyzed its mechanism of viral release driven by matrix protein Z and the cell surface glycoprotein precursor GPC. The L domains in Z are required for efficient virus-like particle release, but Tsg101, ALIX/AIP1, and Vps4A/B are unnecessary for budding. LUJV GPC is cleaved by site 1 protease (S1P) at the RKLM motif, and treatment with the S1P inhibitor PF-429242 reduced LUJV production.


Asunto(s)
Lujo virus/fisiología , Ensamble de Virus , Liberación del Virus , Animales , Línea Celular , Humanos , Lujo virus/crecimiento & desarrollo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...