Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(9): 300, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110243

RESUMEN

Biochemistry of carbon assimilation in aerobic methylotrophs growing on reduced C1 compounds has been intensively studied due to the vital role of these microorganisms in nature. The biochemical pathways of carbon assimilation in methylotrophs growing on multi-carbon substrates are insufficiently explored. Here we elucidated the metabolic route of mannitol assimilation in the alphaproteobacterial facultative methylotroph Methylobrevis pamukkalensis PK2. Two key enzymes of mannitol metabolism, mannitol-2-dehydrogenase (MTD) and fructokinase (FruK), were obtained as His-tagged proteins by cloning and expression of mtd and fruK genes in Escherichia coli and characterized. Genomic analysis revealed that further transformation of fructose-6-phosphate proceeds via the Entner-Doudoroff pathway. During growth on mannitol + methanol mixture, the strain PK2 consumed both substrates simultaneously demonstrating independence of C1 and C6 metabolic pathways. Genome screening showed that genes for mannitol utilization enzymes are present in other alphaproteobacterial methylotrophs predominantly capable of living in association with plants. The capability to utilize a variety of carbohydrates (sorbitol, glucose, fructose, arabinose and xylose) suggests a broad adaptability of the strain PK2 to live in environments where availability of carbon substrate dynamically changes.


Asunto(s)
Fructoquinasas , Manitol , Manitol/metabolismo , Fructoquinasas/metabolismo , Fructoquinasas/genética , Manitol Deshidrogenasas/metabolismo , Manitol Deshidrogenasas/genética , Fructosafosfatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Redes y Vías Metabólicas/genética , Metanol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo
2.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723818

RESUMEN

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.


Asunto(s)
Enzimas Inmovilizadas , Manitol , Manitol/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Glucosa 1-Deshidrogenasa/química , Manitol Deshidrogenasas/metabolismo , Manitol Deshidrogenasas/química
3.
Appl Microbiol Biotechnol ; 107(4): 1329-1339, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680586

RESUMEN

The fruit-origin strain Fructobacillus tropaeoli CRL 2034 can biotransform selenium into seleno-nanoparticles and selenocysteine. The proteomic analysis of F. tropaeoli CRL 2034 exposed to 5 and 100 ppm of Se showed a dose-dependent response since 19 and 77 proteins were deregulated, respectively. In the presence of 5 ppm of Se, the deregulated proteins mainly belonged to the categories of energy production and conversion or had unknown functions, while when cells were grown with 100 ppm of Se, most of the proteins were grouped into amino acid transport and metabolism, nucleotide transport and metabolism, or into unknown functions. However, under both Se conditions, glutathione reductases were overexpressed (1.8-3.1-fold), while mannitol 2-dehydrogenase was downregulated (0.54-0.19-fold), both enzymes related to oxidative stress functions. Mannitol 2-dehydrogenase was the only enzyme found that contained SeCys, and its activity was 1.27-fold increased after 5 ppm of Se exposure. Our results suggest that F. tropaeoli CRL 2034 counteracts Se stress by overexpressing proteins related to oxidative stress resistance and changing the membrane hydrophobicity, which may improve its survival under (food) storage and positively influence its adhesion to intestinal cells. Selenized cells of F. tropaeoli CRL 2034 could be used for producing Se-enriched fermented foods. KEY POINTS: • Selenized cells of F. tropaeoli showed enhanced resistance to oxidative stress. • SeCys was found in the Fructobacillus mannitol 2-dehydrogenase polypeptide chain. • F. tropaeoli mannitol 2-dehydrogenase activity was highest when exposed to selenium.


Asunto(s)
Selenio , Selenio/química , Frutas/metabolismo , Manitol Deshidrogenasas/metabolismo , Proteómica , Estrés Oxidativo
4.
Sheng Wu Gong Cheng Xue Bao ; 38(7): 2549-2565, 2022 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-35871624

RESUMEN

D-mannitol is widely used in the pharmaceutical and medical industries as an important precursor of antitumor drugs and immune stimulants. However, the cost of the current enzymatic process for D-mannitol synthesis is high, thus not suitable for commercialization. To address this issue, an efficient mannitol dehydrogenase LpGDH used for the conversion and a glucose dehydrogenase BaGDH used for NADH regeneration were screened, respectively. These two enzymes were co-expressed in Escherichia coli BL21(DE3) to construct a two-enzyme cascade catalytic reaction for the efficient synthesis of d-mannitol, with a conversion rate of 59.7% from D-fructose achieved. The regeneration of cofactor NADH was enhanced by increasing the copy number of Bagdh, and a recombinant strain E. coli BL21/pETDuet-Lpmdh-Bagdh-Bagdh was constructed to address the imbalance between cofactor amount and key enzyme expression level in the two-enzyme cascade catalytic reaction. An optimized whole cell transformation process was conducted under 30 ℃, initial pH 6.5, cell mass (OD600) 30, 100 g/L D-fructose substrate and an equivalent molar concentration of glucose. The highest yield of D-mannitol was 81.9 g/L with a molar conversion rate of 81.9% in 5 L fermenter under the optimal conversion conditions. This study provides a green and efficient biotransformation method for future large-scale production of D-mannitol, which is also of great importance for the production of other sugar alcohols.


Asunto(s)
Escherichia coli , Manitol , Escherichia coli/metabolismo , Fructosa , Manitol/metabolismo , Manitol Deshidrogenasas/química , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , NAD/metabolismo
5.
Proteomics ; 22(1-2): e2100091, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510745

RESUMEN

Although protein secretion was previously believed to be solely via ER/Golgi pathways, Golgi-independent secretion has now been described in both animals and plants. Secretion of the mannitol catabolic enzyme mannitol dehydrogenase (MTD) in response to the endogenous pathogen response signal salicylic acid (SA) was one of the first reports of unconventional protein secretion in plants. To begin assessing potential secretion-associated MTD protein interactors, we present here high-quality databases describing changes in MTD-interacting proteins following SA treatment of Arabidopsis thaliana cells expressing MTD.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Plantas/metabolismo , Proteínas , Ácido Salicílico/farmacología
6.
Food Res Int ; 137: 109638, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233217

RESUMEN

Recently, the term healthy lifestyle connected to low-calorie diets, although it is not possible to get rid of added sugars as a source of energy, despite the close relation of added sugars to some diseases such as obesity, diabetes, etc. As a result, the sweetener market has flourished, which has led to increased demand for natural sweeteners such as polyols, including d-mannitol. Various methods have been developed to produce d-mannitol to achieve high productivity and low cost. In particular, metabolic engineering for d-mannitol considers one of the most promising approaches for d-mannitol production on the industrial scale. To date, the chemical process is not ideal for large-scale production because of its multistep mechanism involving hydrogenation and high cost. In this review, we highlight and present a comparative evaluation of the biochemical parameters that affecting d-mannitol synthesis from Thermotoga neapolitana and Thermotoga maritima mannitol dehydrogenase (MtDH) as a potential contribution for d-mannitol bio-synthesis. These species were selected because purified mannitol dehydrogenases from both strains have been reported to produce d-mannitol with no sorbitol formation under temperatures (90-120 °C).


Asunto(s)
Archaea , Manitol Deshidrogenasas , Archaea/metabolismo , Metabolismo de los Hidratos de Carbono , Manitol , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Edulcorantes
7.
Biosci Biotechnol Biochem ; 84(8): 1745-1747, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32427050

RESUMEN

GLUCONOBACTER FRATEURII: CHM 43 have D-mannitol dehydrogenase (quinoprotein glycerol dehydrogenase) and flavoprotein D-fructose dehydrogenase in the membranes. When the two enzymes are functional, D-mannitol is converted to 5-keto-D-fructose with 65% yield when cultivated on D-mannitol. 5-Keto-D-fructose production with almost 100% yield was realized with the resting cells. The method proposed here should give a smart strategy for 5-keto-D-fructose production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/genética , Fermentación/genética , Fructosa/análogos & derivados , Gluconobacter/enzimología , Manitol Deshidrogenasas/metabolismo , Proteínas Bacterianas/genética , Deshidrogenasas de Carbohidratos/metabolismo , Membrana Celular/enzimología , Membrana Celular/genética , Fructosa/biosíntesis , Fructosa/aislamiento & purificación , Expresión Génica , Gluconobacter/genética , Humanos , Concentración de Iones de Hidrógeno , Microbiología Industrial , Manitol/metabolismo , Manitol Deshidrogenasas/genética , Estereoisomerismo
8.
BMC Mol Biol ; 20(1): 1, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602381

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs of approximately 22 nucleotides, highly conserved among species, which modulate gene expression by cleaving messenger RNA target or inhibiting translation. MiRNAs are involved in the regulation of many processes including cell proliferation, differentiation, neurogenesis, angiogenesis, and apoptosis. Beef tenderness is an organoleptic characteristic of great influence in the acceptance of meat by consumers. Previous studies have shown that collagen level, marbling, apoptosis and proteolysis are among the many factors that affect beef tenderness. Considering that miRNAs can modulate gene expression, this study was designed to identify differentially expressed miRNAs that could be modulating biological processes involved with beef tenderness. RESULTS: Deep sequence analysis of miRNA libraries from longissimus thoracis muscle allowed the identification of 42 novel and 308 known miRNAs. Among the known miRNAs, seven were specifically expressed in skeletal muscle. Differential expression analysis between animals with high (H) and low (L) estimated breeding values for shear force (EBVSF) revealed bta-mir-182 and bta-mir-183 are up-regulated (q value < 0.05) in animals with L EBVSF, and bta-mir-338 is up-regulated in animals with H EBVSF. The number of bovine predicted targets for bta-mir-182, bta-mir-183 and bta-mir-338 were 811, 281 and 222, respectively, which correspond to 1204 unique target genes. Among these, four of them, MEF2C, MAP3K2, MTDH and TNRC6B were common targets of the three differentially expressed miRNAs. The functional analysis identified important pathways related to tenderness such as apoptosis and the calpain-calpastatin system. CONCLUSION: The results obtained indicate the importance of miRNAs in the regulatory mechanisms that influence muscle proteolysis and meat tenderness and contribute to our better understanding of the role of miRNAs in biological processes associated with beef tenderness.


Asunto(s)
Cruzamiento , Bovinos/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Carne Roja , Animales , Apoptosis , Proteínas de Unión al Calcio/metabolismo , MAP Quinasa Quinasa Quinasa 2/genética , MAP Quinasa Quinasa Quinasa 2/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Angew Chem Int Ed Engl ; 57(50): 16464-16468, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30341805

RESUMEN

A novel strategy to regulate cofactor balance in vivo for whole-cell biotransformation using a synthetic flavin analogue is reported. High efficiency, easy operation, and good applicability were observed for this system. Confocal laser scanning microscopy was employed to verify that the synthetic flavin analogue can directly permeate into Escherichia coli cells without modifying the cell membrane. This work provides a promising intracellular redox regulatory approach to construct more efficient cell factories.


Asunto(s)
Escherichia coli/metabolismo , Flavinas/metabolismo , NAD/metabolismo , Permeabilidad de la Membrana Celular , Escherichia coli/citología , Escherichia coli/enzimología , Flavinas/química , Manitol/metabolismo , Manitol Deshidrogenasas/metabolismo , Manosa/metabolismo , Ingeniería Metabólica , Microscopía Confocal , Oxidación-Reducción
10.
Appl Microbiol Biotechnol ; 101(15): 6165-6177, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28674850

RESUMEN

Mannitol is a natural low-calorie sugar alcohol produced by certain (micro)organisms applicable in foods for diabetics due to its zero glycemic index. In this work, we evaluated mannitol production and yield by the fruit origin strain Fructobacillus tropaeoli CRL 2034 using response surface methodology with central composite design (CCD) as optimization strategy. The effect of the total saccharide (glucose + fructose, 1:2) content (TSC) in the medium (75, 100, 150, 200, and 225 g/l) and stirring (S; 50, 100, 200, 300 and 350 rpm) on mannitol production and yield by this strain was evaluated by using a 22 full-factorial CCD with 4 axial points (α = 1.5) and four replications of the center point, leading to 12 random experimental runs. Fermentations were carried out at 30 °C and pH 5.0 for 24 h. Minitab-15 software was used for experimental design and data analyses. The multiple response prediction analysis established 165 g/l of TSC and 200 rpm of S as optimal culture conditions to reach 85.03 g/l [95% CI (78.68, 91.39)] of mannitol and a yield of 82.02% [95% CI (71.98, 92.06)]. Finally, a validation experiment was conducted at the predicted optimum levels. The results obtained were 81.91 g/l of mannitol with a yield of 77.47% in outstanding agreement with the expected values. The mannitol 2-dehydrogenase enzyme activity was determined with 4.6-4.9 U/mg as the highest value found. To conclude, F. tropaeoli CRL 2034 produced high amounts of high-quality mannitol from fructose, being an excellent candidate for this polyol production.


Asunto(s)
Ficus/microbiología , Leuconostocaceae/metabolismo , Manitol/aislamiento & purificación , Manitol/metabolismo , Metabolismo de los Hidratos de Carbono , Fermentación , Fructosa/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Leuconostocaceae/clasificación , Manitol/química , Manitol Deshidrogenasas/metabolismo , Temperatura
11.
Appl Microbiol Biotechnol ; 101(11): 4713-4723, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28283693

RESUMEN

Consumption of fructose leads to metabolic syndrome, but it is also known to increase iron absorption. Present study investigates the effect of genetically modified Escherichia coli Nissle 1917 (EcN) synbiotic along with fructose on non-heme iron absorption. Charles foster rats weighing 150-200 g were fed with iron-deficient diet for 2 months. Probiotic treatment of EcN (pqq) and EcN (pqq-glf-mtlK) was given once per week, 109 cells after 2 months with fructose in drinking water. Iron levels, blood, and liver parameters for oxidative stress, hyperglycemia, and dyslipidemia were estimated. Transferrin-bound iron levels in the blood decreased significantly after 10 weeks of giving iron-deficient diet. Probiotic treatment of EcN (pqq-glf-mtlK) and fructose together led to the restoration of normal transferrin-bound iron levels and blood and hepatic antioxidant levels as compared to iron-deficient control group. The probiotic also led to the restoration of body weight along with levels of serum and hepatic lipid, blood glucose, and antioxidant in the blood and liver as compared to iron-deficient control group. Restoration of liver injury marker enzymes was also seen. Administration of EcN-producing PQQ and mannitol dehydrogenase enzyme together with fructose led to increase in the transferrin-bound iron levels in the blood and amelioration of consequences of metabolic syndrome caused due to fructose consumption.


Asunto(s)
Escherichia coli/genética , Fructosa/administración & dosificación , Deficiencias de Hierro , Síndrome Metabólico/terapia , Cofactor PQQ/administración & dosificación , Probióticos , Simbióticos , Animales , Peso Corporal , Dieta , Dislipidemias/terapia , Escherichia coli/enzimología , Fructosa/metabolismo , Ingeniería Genética , Hiperglucemia/terapia , Hierro/sangre , Hígado/metabolismo , Manitol Deshidrogenasas/metabolismo , Síndrome Metabólico/fisiopatología , Estrés Oxidativo , Ratas , Transferrina/metabolismo
12.
PLoS One ; 12(1): e0169441, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28060932

RESUMEN

Several plants, fungi, algae, and certain bacteria produce mannitol, a polyol derived from fructose. Mannitol has multiple industrial applications in the food, pharmaceutical, and medical industries, being mainly used as a non-metabolizable sweetener in foods. Many heterofermentative lactic acid bacteria synthesize mannitol when an alternative electron acceptor such as fructose is present in the medium. In previous work, we reported the ability of Lactobacillus reuteri CRL 1101 to efficiently produce mannitol from sugarcane molasses as carbon source at constant pH of 5.0; the activity of the enzyme mannitol 2-dehydrogenase (MDH) responsible for the fructose conversion into mannitol being highest during the log cell growth phase. Here, a detailed assessment of the MDH activity and relative expression of the mdh gene during the growth of L. reuteri CRL 1101 in the presence of fructose is presented. It was observed that MDH was markedly induced by the presence of fructose. A direct correlation between the maximum MDH enzyme activity and a high level of mdh transcript expression during the log-phase of cells grown in a fructose-containing chemically defined medium was detected. Furthermore, two proteomic approaches (2DE and shotgun proteomics) applied in this study confirmed the inducible expression of MDH in L. reuteri. A global study of the effect of fructose on activity, mdh gene, and protein expressions of MDH in L. reuteri is thus for the first time presented. This work represents a deep insight into the polyol formation by a Lactobacillus strain with biotechnological potential in the nutraceutics and pharmaceutical areas.


Asunto(s)
Genómica , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Manitol Deshidrogenasas/metabolismo , Manitol/metabolismo , Proteómica , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Activación Enzimática , Fructosa/metabolismo , Genómica/métodos , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Appl Microbiol Biotechnol ; 100(23): 9967-9978, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27338577

RESUMEN

Gluconobacter (G.) oxydans is able to incompletely oxidize various sugars and polyols for the production of biotechnologically important compound. Recently, we have shown that the organism produces and accumulates mannitol as compatible solute under osmotic stress conditions. The present study describes the role of two cytoplasmic mannitol dehydrogenases for osmotolerance of G. oxydans. It was shown that Gox1432 is a NADP+-dependent mannitol dehydrogenase (EC 1.1.1.138), while Gox0849 uses NAD+ as cofactor (EC 1.1.1.67). The corresponding genes were deleted and the mutants were analyzed for growth under osmotic stress and non-stress conditions. A severe growth defect was detected for Δgox1432 when grown in high osmotic media, while the deletion of gox0849 had no effect when cells were exposed to 450 mM sucrose in the medium. Furthermore, the intracellular mannitol content was reduced in the mutant lacking the NADP+-dependent enzyme Gox1432 in comparison to the parental strain and the Δgox0849 mutant under stress conditions. In addition, transcriptional analysis revealed that Gox1432 is more important for mannitol production in G. oxydans than Gox0849 as the transcript abundance of gene gox1432 was 30-fold higher than of gox0849. In accordance, the activity of the NADH-dependent enzyme Gox0849 in the cell cytoplasm was 10-fold lower in comparison to the NADPH-dependent mannitol dehydrogenase Gox1432. Overexpression of gox1432 in the corresponding deletion mutant restored growth of the cells under osmotic stress, further strengthening the importance of the NADP+-dependent mannitol dehydrogenase for osmotolerance in G. oxydans. These findings provide detailed insights into the molecular mechanism of mannitol-mediated osmoprotection in G. oxydans and are helpful engineering strains with improved osmotolerance for biotechnological applications.


Asunto(s)
Gluconobacter oxydans/enzimología , Gluconobacter oxydans/metabolismo , Manitol Deshidrogenasas/metabolismo , Manitol/metabolismo , Osmorregulación , Medios de Cultivo/química , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Gluconobacter oxydans/genética , Gluconobacter oxydans/crecimiento & desarrollo , Manitol Deshidrogenasas/genética , Presión Osmótica , Estrés Fisiológico
14.
Trends Plant Sci ; 21(6): 486-497, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26850794

RESUMEN

Although the presence of mannitol in organisms as diverse as plants and fungi clearly suggests that this compound has important roles, our understanding of fungal mannitol metabolism and its interaction with mannitol metabolism in plants is far from complete. Despite recent inroads into understanding the importance of mannitol and its metabolic roles in salt, osmotic, and oxidative stress tolerance in plants and fungi, our current understanding of exactly how mannitol protects against reactive oxygen is also still incomplete. In this opinion, we propose a new model of the interface between mannitol metabolism in plants and fungi and how it impacts plant-pathogen interactions.


Asunto(s)
Manitol/metabolismo , Plantas/metabolismo , Hongos/metabolismo , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Manitol Deshidrogenasas/metabolismo , Manitol Deshidrogenasas/fisiología , Modelos Biológicos , Osmorregulación , Estrés Oxidativo , Plantas/microbiología , Especies Reactivas de Oxígeno
15.
Biochim Biophys Acta ; 1851(9): 1107-17, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25959598

RESUMEN

The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Ácidos Grasos/metabolismo , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Malato Deshidrogenasa/metabolismo , Yarrowia/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , ATP Citrato (pro-S)-Liasa/genética , Acetilcoenzima A/metabolismo , Fructosa/metabolismo , Proteínas Fúngicas/genética , Metabolismo de los Lípidos/genética , Malato Deshidrogenasa/deficiencia , Malato Deshidrogenasa/genética , Manitol/metabolismo , Manitol Deshidrogenasas/deficiencia , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , NADP/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Yarrowia/genética
16.
Protein Sci ; 24(6): 936-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25752240

RESUMEN

Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses.


Asunto(s)
Dominio Catalítico/genética , Manitol Deshidrogenasas/química , Manitol Deshidrogenasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico/fisiología , Secuencia Conservada , Manitol Deshidrogenasas/genética , Mutagénesis Sitio-Dirigida , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Especificidad por Sustrato
17.
Bioorg Med Chem Lett ; 25(3): 597-601, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25537269

RESUMEN

Biofilm formation is an important reason for bacterial resistance to antimicrobials. Many compounds with dihydro-pyrrol-2-one (DPO) have antibacterial effects. It is prospective to base on DPO skeleton to design new compounds for biofilm inhibition. DPO was designed by a novel method of tandem cyclization between ethyl glyoxalate and amines, the series of DPO derivatives were synthesized by change of the amines. Their activities were evaluated by the inhibition of biofilm in Pseudomonas aeruginosa. The interaction of DPO derivatives with mannitol dehydrogenase (MDH) or extracellular DNA (eDNA) in the biofilm was simulated by molecular docking to reveal possible mechanism. 19 new DPO derivatives were synthesized and identified, 15 of them had antibacterial activities, but only 5 of them had more than 50% inhibition on biofilm of P. aeruginosa at 50µg/mL. The MDH activity and eDNA content in biofilm decreased significantly after treatment of the DPO derivatives in concentration dependence. The simulation reveals that strong interaction exists between the five DPO derivatives and MDH or eDNA, which are involved in anti-biofilm mechanism. The synthetic method of DPO derivatives is practical to provide effective anti-biofilm agents for P. aeruginosa, and they take effect through inhibition on MDH and eDNA of biofilm.


Asunto(s)
Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pirroles/química , Pirroles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Manitol Deshidrogenasas/antagonistas & inhibidores , Manitol Deshidrogenasas/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Pirroles/síntesis química
18.
Appl Environ Microbiol ; 81(5): 1799-812, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25548051

RESUMEN

Mannitol is a polyol that occurs in a wide range of living organisms, where it fulfills different physiological roles. In particular, mannitol can account for as much as 20 to 30% of the dry weight of brown algae and is likely to be an important source of carbon for marine heterotrophic bacteria. Zobellia galactanivorans (Flavobacteriia) is a model for the study of pathways involved in the degradation of seaweed carbohydrates. Annotation of its genome revealed the presence of genes potentially involved in mannitol catabolism, and we describe here the biochemical characterization of a recombinant mannitol-2-dehydrogenase (M2DH) and a fructokinase (FK). Among the observations, the M2DH of Z. galactanivorans was active as a monomer, did not require metal ions for catalysis, and featured a narrow substrate specificity. The FK characterized was active on fructose and mannose in the presence of a monocation, preferentially K(+). Furthermore, the genes coding for these two proteins were adjacent in the genome and were located directly downstream of three loci likely to encode an ATP binding cassette (ABC) transporter complex, suggesting organization into an operon. Gene expression analysis supported this hypothesis and showed the induction of these five genes after culture of Z. galactanivorans in the presence of mannitol as the sole source of carbon. This operon for mannitol catabolism was identified in only 6 genomes of Flavobacteriaceae among the 76 publicly available at the time of the analysis. It is not conserved in all Bacteroidetes; some species contain a predicted mannitol permease instead of a putative ABC transporter complex upstream of M2DH and FK ortholog genes.


Asunto(s)
Flavobacteriaceae/enzimología , Flavobacteriaceae/metabolismo , Manitol/metabolismo , Redes y Vías Metabólicas/genética , Carbono/metabolismo , Activadores de Enzimas/metabolismo , Flavobacteriaceae/genética , Fructoquinasas/genética , Fructoquinasas/metabolismo , Perfilación de la Expresión Génica , Orden Génico , Iones/metabolismo , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Metales/metabolismo , Operón , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
19.
J Chem Inf Model ; 54(12): 3344-61, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25405925

RESUMEN

Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced. Furthermore, we proposed a plausible mechanism for this proton translocation process that is consistent with the state-dependent structural shifts observed in our analysis. The time-averaged structures generated from our analyses facilitate validation of MD simulation results and provide a comprehensive profile of the dynamic all-occupancy solvation network within and around a flexible solute, from which detailed hydrogen-bonding networks can be inferred. In this way, potential drawbacks arising from the elucidation of these networks by examination of static crystal structures or via alternate rigid-protein solvation analysis procedures can be overcome. Complementary studies aimed at the effective use of our methodology for alternate implementations (e.g., ligand design) are currently underway.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Manitol Deshidrogenasas/química , Simulación de Dinámica Molecular , Movimiento , Protones , Solventes/química , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Mutación , Estructura Secundaria de Proteína , Pseudomonas fluorescens/enzimología , Factores de Tiempo
20.
BMC Cancer ; 14: 869, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25417825

RESUMEN

BACKGROUND: Trastuzumab resistance is almost inevitable in the management of human epidermal growth factor receptor (HER) 2 positive breast cancer, in which phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss is implicated. Since metadherin (MTDH) promotes malignant phenotype of breast cancer, we sought to define whether MTDH promotes trastuzumab resistance by decreasing PTEN expression through an NFκB-dependent pathway. METHODS: The correlations between MTDH and PTEN expressions were analyzed both in HER2 positive breast cancer tissues and trastuzumab resistant SK-BR-3 (SK-BR-3/R) cells. Gene manipulations of MTDH and PTEN levels by knockdown or overexpression were utilized to elucidate molecular mechanisms of MTDH and PTEN implication in trastuzumab resistance. For in vivo studies, SK-BR-3 and SK-BR-3/R cells and modified derivatives were inoculated into nude mice alone or under trastuzumab exposure. Tumor volumes, histological examinations as well as Ki67 and PTEN expressions were revealed. RESULTS: Elevated MTDH expression indicated poor clinical benefit, shortened progression free survival time, and was negatively correlated with PTEN level both in HER2 positive breast cancer patients and SK-BR-3/R cells. MTDH knockdown restored PTEN expression and trastuzumab sensitivity in SK-BR-3/R cells, while MTDH overexpression prevented SK-BR-3 cell death under trastuzumab exposure, probably through IκBα inhibition and nuclear translocation of p65 which subsequently decreased PTEN expression. Synergized effect of PTEN regulation were observed upon MTDH and p65 co-transfection. Forced PTEN expression in SK-BR-3/R cells restored trastuzumab sensitivity. Furthermore, decreased tumor volume and Ki67 level as well as increased PTEN expression were observed after MTDH knockdown in subcutaneous breast cancer xenografts from SK-BR-3/R cells, while the opposite effect were found in grafts from MTDH overexpressing SK-BR-3 cells. CONCLUSIONS: MTDH overexpression confers trastuzumab resistance in HER2 positive breast cancer. MTDH mediates trastuzumab resistance, at least in part, by PTEN inhibition through an NFκB-dependent pathway, which may be utilized as a promising therapeutic target for HER2 positive breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Manitol Deshidrogenasas/metabolismo , FN-kappa B/metabolismo , Fosfohidrolasa PTEN/genética , Receptor ErbB-2/metabolismo , Adulto , Anciano , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos , Humanos , Manitol Deshidrogenasas/genética , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Receptor ErbB-2/genética , Transducción de Señal/efectos de los fármacos , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA