Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(6): e0028324, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780248

RESUMEN

Human and simian immunodeficiency viruses (HIV and SIV) are lentiviruses that reverse transcribe their RNA genome with subsequent integration into the genome of the target cell. How progressive infection and administration of antiretrovirals (ARVs) longitudinally influence the transcriptomic and epigenetic landscape of particular T cell subsets, and how these may influence the genetic location of integration are unclear. Here, we use RNAseq and ATACseq to study the transcriptomics and epigenetic landscape of longitudinally sampled naïve and memory CD4+ and CD8+ T cells in two species of non-human primates prior to SIV infection, during chronic SIV infection, and after administration of ARVs. We find that SIV infection leads to significant alteration to the transcriptomic profile of all T cell subsets that are only partially reversed by administration of ARVs. Epigenetic changes were more apparent in animals with longer periods of untreated SIV infection and correlated well with changes in corresponding gene expression. Known SIV integration sites did not vary due to SIV status but did contain more open chromatin in rhesus macaque memory T cells, and the expression of proteasome-related genes at the pre-SIV timepoint correlated with subsequent viremia.IMPORTANCEChronic inflammation during progressive human and simian immunodeficiency virus (HIV and SIV) infections leads to significant co-morbidities in infected individuals with significant consequences. Antiretroviral (ARV)-treated individuals also manifest increased levels of inflammation which are associated with increased mortalities. These data will help guide rational development of modalities to reduce inflammation observed in people living with HIV and suggest mechanisms underlying lentiviral integration site preferences.


Asunto(s)
Antirretrovirales , Epigénesis Genética , Células T de Memoria , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Transcriptoma , Animales , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Epigénesis Genética/efectos de los fármacos , Macaca mulatta/genética , Macaca mulatta/inmunología , Macaca mulatta/virología , Macaca nemestrina/genética , Macaca nemestrina/inmunología , Macaca nemestrina/virología , Células T de Memoria/efectos de los fármacos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Células T de Memoria/virología , Complejo de la Endopetidasa Proteasomal/genética , RNA-Seq , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Viremia/tratamiento farmacológico , Viremia/genética , Viremia/inmunología , Viremia/virología
2.
Nat Commun ; 13(1): 80, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013199

RESUMEN

Cross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Trazado de Contacto/métodos , Reacciones Cruzadas/inmunología , Células T de Memoria/inmunología , SARS-CoV-2/inmunología , Adulto , COVID-19/epidemiología , COVID-19/virología , Coronavirus/inmunología , Coronavirus/fisiología , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Masculino , Células T de Memoria/metabolismo , Células T de Memoria/virología , Persona de Mediana Edad , Pandemias/prevención & control , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Adulto Joven
3.
Viruses ; 13(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34960628

RESUMEN

Exposure of the adaptive immune system to a pathogen can result in the activation and expansion of T cells capable of recognizing not only the specific antigen but also different unrelated antigens, a process which is commonly referred to as heterologous immunity. While such cross-reactivity is favourable in amplifying protective immune responses to pathogens, induction of T cell-mediated heterologous immune responses to allo-antigens in the setting of solid organ transplantation can potentially lead to allograft rejection. In this review, we provide an overview of murine and human studies investigating the incidence and functional properties of virus-specific memory T cells cross-reacting with allo-antigens and discuss their potential relevance in the context of solid organ transplantation.


Asunto(s)
Antígenos HLA/inmunología , Inmunidad Celular/inmunología , Inmunidad Heteróloga/inmunología , Isoantígenos/inmunología , Animales , Reacciones Cruzadas/inmunología , Humanos , Células T de Memoria/inmunología , Células T de Memoria/virología , Ratones , Trasplante de Órganos , Linfocitos T/inmunología
4.
Viruses ; 13(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34960744

RESUMEN

Development of potential HIV-1 curative interventions requires accurate characterization of the proviral reservoir, defined as host-integrated viral DNA genomes that drive rebound of viremia upon halting ART (antiretroviral therapy). Evaluation of such interventions necessitates methods capable of pinpointing the rare, genetically intact, replication-competent proviruses within a background of defective proviruses. This evaluation can be achieved by identifying the distinct integration sites of intact proviruses within host genomes and monitoring the dynamics of these proviruses and host cell lineages over longitudinal sampling. Until recently, molecular genetic approaches at the single proviral level have been generally limited to one of a few metrics, such as proviral genome sequence/intactness, host-proviral integration site, or replication competency. New approaches, taking advantage of MDA (multiple displacement amplification) for WGA (whole genome amplification), have enabled multiparametric proviral characterization at the single-genome level, including proviral genome sequence, host-proviral integration site, and phenotypic characterization of the host cell lineage, such as CD4 memory subset and antigen specificity. In this review, we will examine the workflow of MDA-augmented molecular genetic approaches to study the HIV-1 reservoir, highlighting technical advantages and flexibility. We focus on a collection of recent studies in which investigators have used these approaches to comprehensively characterize intact and defective proviruses from donors on ART, investigate mechanisms of elite control, and define cell lineage identity and antigen specificity of infected CD4+ T cell clones. The highlighted studies exemplify how these approaches and their future iterations will be key in defining the targets and evaluating the impacts of HIV curative interventions.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Fármacos Anti-VIH/uso terapéutico , Terapia Antirretroviral Altamente Activa , Virus Defectuosos/genética , Genoma Viral , Infecciones por VIH/tratamiento farmacológico , VIH no-Progresivos , VIH-1/fisiología , Humanos , Células T de Memoria/virología , Técnicas de Amplificación de Ácido Nucleico , Provirus/fisiología , Viremia , Integración Viral , Latencia del Virus
5.
Cell Rep ; 37(2): 109796, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644568

RESUMEN

To gain insight into the signaling determinants of effector-associated DNA methylation programming among CD8 T cells, we explore the role of interleukin (IL)-12 in the imprinting of IFNg expression during CD8 T cell priming. We observe that anti-CD3/CD28-mediated stimulation of human naive CD8 T cells is not sufficient to induce substantial demethylation of the IFNg promoter. However, anti-CD3/CD28 stimulation in the presence of the inflammatory cytokine, IL-12, results in stable demethylation of the IFNg locus that is commensurate with IFNg expression. IL-12-associated demethylation of the IFNg locus is coupled to cell division through TET2-dependent demethylation in an ex vivo human chimeric antigen receptor T cell model system and an in vivo immunologically competent murine system. Collectively, these data illustrate that IL-12 signaling promotes TET2-mediated effector DNA demethylation programming in CD8 T cells and serve as proof of concept that cytokines can guide induction of epigenetically regulated traits for T cell-based immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Interferón gamma/metabolismo , Interleucina-12/farmacología , Coriomeningitis Linfocítica/enzimología , Células T de Memoria/efectos de los fármacos , Animales , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Modelos Animales de Enfermedad , Humanos , Memoria Inmunológica/efectos de los fármacos , Interferón gamma/genética , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Células T de Memoria/enzimología , Células T de Memoria/inmunología , Células T de Memoria/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Prueba de Estudio Conceptual , Transducción de Señal
6.
Front Immunol ; 12: 738955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603321

RESUMEN

There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies.


Asunto(s)
Infecciones Bacterianas/prevención & control , Memoria Inmunológica , Pulmón/inmunología , Células B de Memoria/inmunología , Células T de Memoria/inmunología , Infecciones del Sistema Respiratorio/inmunología , Virosis/prevención & control , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Interacciones Huésped-Patógeno , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/virología , Células B de Memoria/metabolismo , Células B de Memoria/microbiología , Células B de Memoria/virología , Células T de Memoria/metabolismo , Células T de Memoria/microbiología , Células T de Memoria/virología , Fenotipo , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/virología , Vacunación , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Virosis/inmunología , Virosis/metabolismo , Virosis/microbiología
7.
Front Immunol ; 12: 728669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566986

RESUMEN

CD8 T cell memory offers critical antiviral protection, even in the absence of neutralizing antibodies. The paradigm is that CD8 T cell memory within the lung tissue consists of a mix of circulating TEM cells and non-circulating TRM cells. However, based on our analysis, the heterogeneity within the tissue is much higher, identifying TCM, TEM, TRM, and a multitude of populations which do not perfectly fit these classifications. Further interrogation of the populations shows that TRM cells that express CD49a, both with and without CD103, have increased and diverse effector potential compared with CD49a negative populations. These populations function as a one-man band, displaying antiviral activity, chemokine production, release of GM-CSF, and the ability to kill specific targets in vitro with delayed kinetics compared with effector CD8 T cells. Together, this study establishes that CD49a defines multiple polyfunctional CD8 memory subsets after clearance of influenza infection, which act to eliminate virus in the absence of direct killing, recruit and mature innate immune cells, and destroy infected cells if the virus persists.


Asunto(s)
Alphainfluenzavirus/inmunología , Linfocitos T CD8-positivos/metabolismo , Memoria Inmunológica , Integrina alfa1/metabolismo , Pulmón/metabolismo , Células T de Memoria/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Quimiocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interacciones Huésped-Patógeno , Alphainfluenzavirus/patogenicidad , Cinética , Pulmón/inmunología , Pulmón/virología , Masculino , Células T de Memoria/inmunología , Células T de Memoria/virología , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Fenotipo
8.
Front Immunol ; 12: 735643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552595

RESUMEN

Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Epiteliales/inmunología , Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Inmunidad Innata , Memoria Inmunológica , Células T de Memoria/inmunología , Piel/inmunología , Inmunidad Adaptativa/genética , Adulto , Anciano , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Perfilación de la Expresión Génica , Herpes Genital/genética , Herpes Genital/metabolismo , Herpes Genital/virología , Herpesvirus Humano 2/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/genética , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , Células T de Memoria/metabolismo , Células T de Memoria/virología , Persona de Mediana Edad , Fenotipo , Piel/metabolismo , Piel/virología , Transcriptoma
9.
J Immunother Cancer ; 9(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34049932

RESUMEN

BACKGROUND: The host's immune system develops in equilibrium with both cellular self-antigens and non-self-antigens derived from microorganisms which enter the body during lifetime. In addition, during the years, a tumor may arise presenting to the immune system an additional pool of non-self-antigens, namely tumor antigens (tumor-associated antigens, TAAs; tumor-specific antigens, TSAs). METHODS: In the present study, we looked for homology between published TAAs and non-self-viral-derived epitopes. Bioinformatics analyses and ex vivo immunological validations have been performed. RESULTS: Surprisingly, several of such homologies have been found. Moreover, structural similarities between paired TAAs and viral peptides as well as comparable patterns of contact with HLA and T cell receptor (TCR) α and ß chains have been observed. Therefore, the two classes of non-self-antigens (viral antigens and tumor antigens) may converge, eliciting cross-reacting CD8+ T cell responses which possibly drive the fate of cancer development and progression. CONCLUSIONS: An established antiviral T cell memory may turn out to be an anticancer T cell memory, able to control the growth of a cancer developed during the lifetime if the expressed TAA is similar to the viral epitope. This may ultimately represent a relevant selective advantage for patients with cancer and may lead to a novel preventive anticancer vaccine strategy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos Virales/inmunología , Epítopos , Memoria Inmunológica , Células T de Memoria/inmunología , Secuencia de Aminoácidos , Antígenos de Neoplasias/química , Antígenos Virales/química , Células Cultivadas , Reacciones Cruzadas , Bases de Datos de Proteínas , Ensayo de Immunospot Ligado a Enzimas , Mapeo Epitopo , Interacciones Huésped-Patógeno , Humanos , Interferón gamma/metabolismo , Ensayos de Liberación de Interferón gamma , Células T de Memoria/metabolismo , Células T de Memoria/virología , Modelos Inmunológicos , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
FEBS J ; 288(24): 7123-7142, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33590946

RESUMEN

The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.


Asunto(s)
Envejecimiento/inmunología , COVID-19/inmunología , Células T de Memoria/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Anciano , Envejecimiento/genética , COVID-19/genética , COVID-19/patología , COVID-19/virología , Diferenciación Celular , Proliferación Celular , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/inmunología , Regulación de la Expresión Génica , Humanos , Células T de Memoria/virología , MicroARNs/genética , MicroARNs/inmunología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Linfocitos T Citotóxicos/virología , Linfocitos T Colaboradores-Inductores/virología , Linfocitos T Reguladores/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA