Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Appl Opt ; 60(25): G10-G18, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613190

RESUMEN

Understanding biological responses to directed energy (DE) is critical to ensure the safety of personnel within the Department of Defense. At the Air Force Research Laboratory, we have developed or adapted advanced optical imaging systems that quantify biophysical responses to DE. One notable cellular response to DE exposure is the formation of blebs, or semi-spherical protrusions of the plasma membrane in living cells. In this work, we demonstrate the capacity of quantitative phase imaging (QPI) to both visualize and quantify the formation of membrane blebs following DE exposure. QPI is an interferometric imaging tool that uses optical path length as a label-free contrast mechanism and is sensitive to the non-aqueous mass density, or dry mass, of living cells. Blebs from both CHO-K1 and U937 cells were generated after exposure to a series of 600 ns, 21.2 kV/cm electric pulses. These blebs were visualized in real time, and their dry mass relative to the rest of the cell body was quantified as a function of time. It is our hope that this system will lead to an improved understanding of both DE-induced and apoptotic blebbing.


Asunto(s)
Fenómenos Biofísicos/fisiología , Membrana Celular , Extensiones de la Superficie Celular , Microscopía de Interferencia/métodos , Imagen Óptica/métodos , Animales , Células CHO , Extensiones de la Superficie Celular/fisiología , Extensiones de la Superficie Celular/ultraestructura , Cricetulus , Estimulación Eléctrica/métodos , Diseño de Equipo , Humanos , Microscopía de Interferencia/instrumentación , Imagen Óptica/instrumentación , Tamaño de los Orgánulos , Células U937
2.
Viruses ; 13(5)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069520

RESUMEN

Virus particle concentration is a critical piece of information for virology, viral vaccines and gene therapy research. We tested a novel nanoparticle counting device, "Videodrop", for its efficacy in titering and characterization of virus particles. The Videodrop nanoparticle counter is based on interferometric light microscopy (ILM). The method allows the detection of particles under the diffraction limit capabilities of conventional light microscopy. We analyzed lenti-, adeno-, and baculovirus samples in different concentrations and compared the readings against traditional titering and characterization methods. The tested Videodrop particle counter is especially useful when measuring high-concentration purified virus preparations. Certain non-purified sample types or small viruses may be impossible to characterize or may require the use of standard curve or background subtraction methods, which increases the duration of the analysis. Together, our testing shows that Videodrop is a reasonable option for virus particle counting in situations where a moderate number of samples need to be analyzed quickly.


Asunto(s)
Microscopía de Interferencia/métodos , Virión/aislamiento & purificación , Virus/clasificación , Virus/aislamiento & purificación , Microscopía de Interferencia/instrumentación , Carga Viral/métodos
4.
Nat Commun ; 12(1): 1744, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741998

RESUMEN

Interferometric scattering microscopy is increasingly employed in biomedical research owing to its extraordinary capability of detecting nano-objects individually through their intrinsic elastic scattering. To significantly improve the signal-to-noise ratio without increasing illumination intensity, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a dielectric photonic crystal (PC) resonator is utilized as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create a large intensity contrast. Importantly, the scattered photons assume the wavevectors delineated by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W cm-2. An analytical model of the scattering process is discussed, followed by demonstration of virus and protein detection. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies.


Asunto(s)
Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/métodos , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Cristalización , Diseño de Equipo , Oro , Procesamiento de Imagen Asistido por Computador , Nanopartículas del Metal , Nanoestructuras , Fotones , Proteínas/aislamiento & purificación , Virión/aislamiento & purificación , Virus/aislamiento & purificación
5.
Ultramicroscopy ; 214: 112990, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413680

RESUMEN

Coherent modulation imaging (CMI) has been shown to be an effective lensless diffraction approach to imaging general extended samples with fast algorithmic convergence and high robustness to data imperfection. Being a single-shot technique, CMI holds a high potential for imaging dynamics with ultrafast pulses like the ones from free-electron lasers. In the reported work, strong modulators have been suggested for CMI to have the optimal performance, which may be an obstacle for the wide adoption of the method. Here we show that with our improved reconstruction algorithm the requirements on the modulation depth and feature size of a modulator can be relaxed. Furthermore, we demonstrate that when cascade configuration is used, the modulators can be even weaker while providing lower image errors in reconstruction than the case of a single modulator. Detailed numerical studies in both far-field and near-field experiment geometry are given via simulation. A relaxed requirement on modulators in CMI could pave the way for its wide use in biology and materials science.


Asunto(s)
Simulación por Computador , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía de Interferencia/métodos , Difracción de Rayos X/métodos , Algoritmos , Microscopía de Interferencia/instrumentación , Microscopía de Contraste de Fase , Difracción de Rayos X/instrumentación
6.
Nat Commun ; 10(1): 4691, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619681

RESUMEN

Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.


Asunto(s)
Microscopía de Interferencia/instrumentación , Animales , Encéfalo , Células HeLa , Células Hep G2 , Humanos , Imagenología Tridimensional , Larva , Ratones , Microscopía de Interferencia/métodos , Neuronas , Imagen Óptica , Cuarzo , Ratas , Semiconductores , Tendones , Pez Cebra
7.
Sci Rep ; 9(1): 12188, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434941

RESUMEN

Azimuthal beam scanning eliminates the uneven excitation field arising from laser interference in through-objective total internal reflection fluorescence (TIRF) microscopy. The same principle can be applied to scanning angle interference microscopy (SAIM), where precision control of the scanned laser beam presents unique technical challenges for the builders of custom azimuthal scanning microscopes. Accurate synchronization between the instrument computer, beam scanning system and excitation source is required to collect high quality data and minimize sample damage in SAIM acquisitions. Drawing inspiration from open-source prototyping systems, like the Arduino microcontroller boards, we developed a new instrument control platform to be affordable, easily programmed, and broadly useful, but with integrated, precision analog circuitry and optimized firmware routines tailored to advanced microscopy. We show how the integration of waveform generation, multiplexed analog outputs, and native hardware triggers into a single central hub provides a versatile platform for performing fast circle-scanning acquisitions, including azimuthal scanning SAIM and multiangle TIRF. We also demonstrate how the low communication latency of our hardware platform can reduce image intensity and reconstruction artifacts arising from synchronization errors produced by software control. Our complete platform, including hardware design, firmware, API, and software, is available online for community-based development and collaboration.


Asunto(s)
Microscopía Fluorescente/métodos , Artefactos , Diseño de Equipo , Células HeLa , Humanos , Rayos Láser , Membrana Dobles de Lípidos/química , Microscopía Fluorescente/instrumentación , Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/métodos , Programas Informáticos
8.
Nat Commun ; 10(1): 1652, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971691

RESUMEN

Understanding the relationship between intracellular motion and macromolecular structure remains a challenge in biology. Macromolecular structures are assembled from numerous molecules, some of which cannot be labeled. Most techniques to study motion require potentially cytotoxic dyes or transfection, which can alter cellular behavior and are susceptible to photobleaching. Here we present a multimodal label-free imaging platform for measuring intracellular structure and macromolecular dynamics in living cells with a sensitivity to macromolecular structure as small as 20 nm and millisecond temporal resolution. We develop and validate a theory for temporal measurements of light interference. In vitro, we study how higher-order chromatin structure and dynamics change during cell differentiation and ultraviolet (UV) light irradiation. Finally, we discover cellular paroxysms, a near-instantaneous burst of macromolecular motion that occurs during UV induced cell death. With nanoscale sensitive, millisecond resolved capabilities, this platform could address critical questions about macromolecular behavior in live cells.


Asunto(s)
Apoptosis/efectos de la radiación , Microscopía Intravital/métodos , Microscopía de Interferencia/métodos , Imagen Multimodal/métodos , Rayos Ultravioleta/efectos adversos , Citoesqueleto de Actina/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Células HeLa , Humanos , Microscopía Intravital/instrumentación , Células Madre Mesenquimatosas , Microscopía de Interferencia/instrumentación , Imagen Multimodal/instrumentación , Nanosferas , Fantasmas de Imagen , Fosfatidilserinas/metabolismo , Factores de Tiempo
9.
Nat Commun ; 10(1): 1268, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894522

RESUMEN

Super-resolution (SR) techniques have extended the optical resolution down to a few nanometers. However, quantitative treatment of SR data remains challenging due to its complex dependence on a manifold of experimental parameters. Among the different SR variants, DNA-PAINT is relatively straightforward to implement, since it achieves the necessary 'blinking' without the use of rather complex optical or chemical activation schemes. However, it still suffers from image and quantification artifacts caused by inhomogeneous optical excitation. Here we demonstrate that several experimental challenges can be alleviated by introducing a segment-wise analysis approach and ultimately overcome by implementing a flat-top illumination profile for TIRF microscopy using a commercially-available beam-shaping device. The improvements with regards to homogeneous spatial resolution and precise kinetic information over the whole field-of-view were quantitatively assayed using DNA origami and cell samples. Our findings open the door to high-throughput DNA-PAINT studies with thus far unprecedented accuracy for quantitative data interpretation.


Asunto(s)
ADN/ultraestructura , Microscopía Fluorescente/métodos , Microscopía de Interferencia/métodos , Oligonucleótidos/química , Animales , Artefactos , Células COS , Chlorocebus aethiops , Humanos , Iluminación , Microscopía Fluorescente/instrumentación , Microscopía de Interferencia/instrumentación
10.
J Vis Exp ; (143)2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30741262

RESUMEN

The aim of this article is to visually demonstrate the utilization of an interferometric method for encoding complex fields associated with coherent laser radiation. The method is based on the coherent sum of two uniform waves, previously encoded into a phase-only spatial light modulator (SLM) by spatial multiplexing of their phases. Here, the interference process is carried out by spatial filtering of light frequencies at the Fourier plane of certain imaging system. The correct implementation of this method allows arbitrary phase and amplitude information to be retrieved at the output of the optical system. It is an on-axis, rather than off-axis encoding technique, with a direct processing algorithm (not an iterative loop), and free from coherent noise (speckle). The complex field can be exactly retrieved at the output of the optical system, except for some loss of resolution due to the frequency filtering process. The main limitation of the method might come from the inability to operate at frequency rates higher than the refresh rate of the SLM. Applications include, but are not limited to, linear and non-linear microscopy, beam shaping, or laser micro-processing of material surfaces.


Asunto(s)
Algoritmos , Rayos Láser/normas , Luz , Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/métodos , Procesamiento de Imagen Asistido por Computador , Percepción Espacial
11.
Skin Res Technol ; 25(2): 229-233, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30367506

RESUMEN

BACKGROUND: In the clinical practice, transparent films are used as sterile interfaces in in vivo dermatologic imaging in order to prevent the transmissions of infections. However, in our experience, the use of a transparent film can alter skin images. Our study aimed to compare the optical quality of a series of different plastic films used as interfaces in order to understand if some might be more suitable for imaging. MATERIALS AND METHODS: We tested the optical properties of 11 different protective transparent films that are marketed in France with a transparency meter and a spectrophotometer. RESULTS: Transmission, minimal diffusion, amount of gray, and contrast were obtained for each transparent film. Transmission ranged from 93.24% to 96.88% (mean 95.36; standard deviation SD 1.02), minimal diffusion from 88.28% to 123.87% (mean 101.04; standard deviation SD 10.02) and contrast from 11.01 to 15.88 (mean 13.93 and SD 1.3). For some films, the transmission was lower at lower wavelengths. CONCLUSION: All tested films had excellent optical properties. However, some of them had better optical qualities and seemed more suitable for their use in dermatologic imaging.


Asunto(s)
Dermatología/instrumentación , Dermoscopía/instrumentación , Transmisión de Enfermedad Infecciosa/prevención & control , Dermatología/normas , Dermoscopía/normas , Diseño de Equipo/instrumentación , Diseño de Equipo/normas , Humanos , Aumento de la Imagen/instrumentación , Aumento de la Imagen/normas , Microscopía Confocal/instrumentación , Microscopía Confocal/normas , Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/normas , Plásticos , Guías de Práctica Clínica como Asunto
12.
J Biomed Opt ; 23(2): 1-6, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29488366

RESUMEN

Characterization of spermatozoon viability is a common test in treating infertility. Recently, it has been shown that label-free, phase-sensitive imaging can provide a valuable alternative for this type of assay. We employ spatial light interference microscopy (SLIM) to perform high-accuracy single-cell phase imaging and decouple the average thickness and refractive index information for the population. This procedure was enabled by quantitative-phase imaging cells on media of two different refractive indices and using a numerical tool to remove the curvature from the cell tails. This way, we achieved ensemble averaging of topography and refractometry of 100 cells in each of the two groups. The results show that the thickness profile of the cell tail goes down to 150 nm and the refractive index can reach values of 1.6 close to the head.


Asunto(s)
Microscopía de Interferencia/métodos , Refractometría/métodos , Espermatozoides/citología , Espermatozoides/fisiología , Animales , Bovinos , Diseño de Equipo , Luz , Masculino , Microscopía de Interferencia/instrumentación
13.
J Microsc ; 270(3): 290-301, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29345317

RESUMEN

Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast microscope for in vivo imaging of wound healing. Orientation-independent differential interference contrast provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, nontransgenic animal model. In particular, the orientation-independent differential interference contrast microscope equipped with a 40x/0.75NA objective lens and using the illumination light with wavelength 546 nm demonstrated a resolution of 460 nm. The repair of individual cells, the adhesion of cells to close a gap, and the concomitant contraction of these cells during closure is clearly visualized.


Asunto(s)
Movimiento Celular , Células Epiteliales/citología , Células Epiteliales/fisiología , Hidrozoos/citología , Microscopía Intravital/métodos , Microscopía de Interferencia/métodos , Cicatrización de Heridas , Animales , Microscopía Intravital/instrumentación , Microscopía de Interferencia/instrumentación
14.
Sci Rep ; 7(1): 12454, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963483

RESUMEN

In the last decade, high-content screening based on multivariate single-cell imaging has been proven effective in drug discovery to evaluate drug-induced phenotypic variations. Unfortunately, this method inherently requires fluorescent labeling which has several drawbacks. Here we present a label-free method for evaluating cellular drug responses only by high-throughput bright-field imaging with the aid of machine learning algorithms. Specifically, we performed high-throughput bright-field imaging of numerous drug-treated and -untreated cells (N = ~240,000) by optofluidic time-stretch microscopy with high throughput up to 10,000 cells/s and applied machine learning to the cell images to identify their morphological variations which are too subtle for human eyes to detect. Consequently, we achieved a high accuracy of 92% in distinguishing drug-treated and -untreated cells without the need for labeling. Furthermore, we also demonstrated that dose-dependent, drug-induced morphological change from different experiments can be inferred from the classification accuracy of a single classification model. Our work lays the groundwork for label-free drug screening in pharmaceutical science and industry.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Aprendizaje Automático , Microscopía de Interferencia/métodos , Paclitaxel/farmacología , Forma de la Célula/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Humanos , Células MCF-7 , Microfluídica/instrumentación , Microfluídica/métodos , Microscopía de Interferencia/instrumentación
15.
PLoS One ; 12(6): e0179728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28651016

RESUMEN

Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm), while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm). Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.


Asunto(s)
Ebolavirus/ultraestructura , Microscopía de Interferencia/métodos , Microscopía Ultravioleta/métodos , Virión/ultraestructura , Virus Zika/ultraestructura , Animales , Diseño de Equipo , Humanos , Microscopía Electrónica de Rastreo , Microscopía de Interferencia/instrumentación , Microscopía Ultravioleta/instrumentación , Virus Vaccinia/ultraestructura , Vesiculovirus/ultraestructura
17.
J Biomed Opt ; 21(10): 106007, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27786343

RESUMEN

We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).


Asunto(s)
Holografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía de Interferencia/métodos , Algoritmos , Animales , Línea Celular Tumoral/citología , Diseño de Equipo , Eritrocitos/citología , Holografía/instrumentación , Humanos , Iluminación , Masculino , Microscopía de Interferencia/instrumentación , Reproducibilidad de los Resultados , Espermatozoides/citología , Porcinos
18.
Sci Rep ; 6: 32223, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27599635

RESUMEN

Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.


Asunto(s)
Lentes , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Óptica y Fotónica/instrumentación , Retina/metabolismo , Algoritmos , Animales , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/métodos , Refractometría/instrumentación , Refractometría/métodos , Reproducibilidad de los Resultados
19.
Sci Adv ; 2(6): e1600077, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27386571

RESUMEN

Light microscopes can detect objects through several physical processes, such as scattering, absorption, and reflection. In transparent objects, these mechanisms are often too weak, and interference effects are more suitable to observe the tiny refractive index variations that produce phase shifts. We propose an on-chip microscope design that exploits birefringence in an unconventional geometry. It makes use of two sheared and quasi-overlapped illuminating beams experiencing relative phase shifts when going through the object, and a complementary metal-oxide-semiconductor image sensor array to record the resulting interference pattern. Unlike conventional microscopes, the beams are unfocused, leading to a very large field of view (20 mm(2)) and detection volume (more than 0.5 cm(3)), at the expense of lateral resolution. The high axial sensitivity (<1 nm) achieved using a novel phase-shifting interferometric operation makes the proposed device ideal for examining transparent substrates and reading microarrays of biomarkers. This is demonstrated by detecting nanometer-thick surface modulations on glass and single and double protein layers.


Asunto(s)
Microscopía de Interferencia/métodos , Diseño de Equipo , Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/normas , Microscopía de Contraste de Fase , Imagen Molecular/métodos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...