Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 712-713: 149933, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640730

RESUMEN

BEND family transcription factors directly interact with DNA through BEN domains and have been found across metazoan species. Interestingly, certain insect and mammalian viruses have also hijacked Bend genes into their genome. However, the phylogenetic classification and evolution of these viral BEN domains remain unclear. Building on our previous finding that in silico method accurately determine the 3D model of BEN domains, we used AlphaFold2 to predict the tertiary structures of poxviral BEN domains for comprehensive homologous comparison. We revealed that the majority of poxviral BEN modules exhibit characteristics of type II BEN. Additionally, electrostatic surface potential analysis found various poxviral BEN domains, including the first BEN of OPG067 in Orthopoxvirus, the third BEN of OPG067 in Yatapoxvirus and the third BEN of MC036R in MCV, have positively charged protein surfaces, indicating a structural basis for DNA loading. Notably, MC036R shares structural resemblance with human BEND3, as they both contain four BEN domains and an intrinsically disordered region. In summary, our discoveries provide deeper insights into the functional roles of BEN proteins within poxviruses.


Asunto(s)
Poxviridae , Dominios Proteicos , Proteínas Virales , Poxviridae/genética , Poxviridae/química , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Humanos , Homología Estructural de Proteína , Filogenia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Structure ; 32(6): 654-661.e3, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579705

RESUMEN

There are three key components at the core of the mpox virus (MPXV) DNA polymerase holoenzyme: DNA polymerase F8, processivity factors A22, and the Uracil-DNA glycosylase E4. The holoenzyme is recognized as a vital antiviral target because MPXV replicates in the cytoplasm of host cells. Nucleotide analogs such as cidofovir and cytarabine (Ara-C) have shown potential in curbing MPXV replication and they also display promise against other poxviruses. However, the mechanism behind their inhibitory effects remains unclear. Here, we present the cryo-EM structure of the DNA polymerase holoenzyme F8/A22/E4 bound with its competitive inhibitor Ara-C-derived cytarabine triphosphate (Ara-CTP) at an overall resolution of 3.0 Å and reveal its inhibition mechanism. Ara-CTP functions as a direct chain terminator in proximity to the deoxycytidine triphosphate (dCTP)-binding site. The extra hydrogen bond formed with Asn665 makes it more potent in binding than dCTP. Asn665 is conserved among eukaryotic B-family polymerases.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Modelos Moleculares , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Sitios de Unión , Unión Proteica , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Antivirales/química , Antivirales/farmacología , Poxviridae/química , Poxviridae/genética , Poxviridae/metabolismo , Citidina Trifosfato/metabolismo , Citidina Trifosfato/química
3.
Nat Struct Mol Biol ; 31(7): 1114-1123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38316877

RESUMEN

Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Multimerización de Proteína , Virus Vaccinia/ultraestructura , Virus Vaccinia/química , Virus Vaccinia/metabolismo , Poxviridae/ultraestructura , Poxviridae/metabolismo , Poxviridae/química , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/ultraestructura , Proteínas del Núcleo Viral/metabolismo , Humanos
4.
Biomed J ; 45(3): 439-453, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34311129

RESUMEN

Chemokines are small proteins that are critical for immune function, being primarily responsible for the activation and chemotaxis of leukocytes. As such, many viruses, as well as parasitic arthropods, have evolved systems to counteract chemokine function in order to maintain virulence, such as binding chemokines, mimicking chemokines, or producing analogs of transmembrane chemokine receptors that strongly bind their targets. The focus of this review is the large group of chemokine binding proteins (CBP) with an emphasis on those produced by mammalian viruses. Because many chemokines mediate inflammation, these CBP could possibly be used pharmaceutically as anti-inflammatory agents. In this review, we summarize the structural properties of a diverse set of CBP and describe in detail the chemokine binding properties of the poxvirus-encoded CBP called vCCI (viral CC Chemokine Inhibitor). Finally, we describe the current and emerging capabilities of combining computational simulation, structural analysis, and biochemical/biophysical experimentation to understand, and possibly re-engineer, protein-protein interactions.


Asunto(s)
Proteínas Portadoras , Poxviridae , Animales , Proteínas Portadoras/metabolismo , Quimiocinas , Humanos , Mamíferos/metabolismo , Poxviridae/química , Poxviridae/metabolismo , Unión Proteica , Proteínas Virales/química , Proteínas Virales/metabolismo
5.
J Biol Chem ; 294(13): 5228-5229, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926761

RESUMEN

Poxviruses have evolved efficient proteins that bind mammalian cytokines and chemokines to suppress host immunity. Here Pontejo et al. examine in detail how one such poxviral protein, CrmD, that has activity against both mammalian tumor necrosis factor and chemokines, interacts with its host targets. They apply their findings to refine a human anti-cytokine therapeutic and increase its specificity, providing an elegant example of the benefits of mining viral proteins for therapeutically useful information.


Asunto(s)
Antiinflamatorios/inmunología , Antiinflamatorios/farmacología , Citocinas/antagonistas & inhibidores , Poxviridae/inmunología , Proteínas Virales/inmunología , Proteínas Virales/farmacología , Animales , Antiinflamatorios/química , Citocinas/inmunología , Descubrimiento de Drogas , Humanos , Poxviridae/química , Infecciones por Poxviridae/virología , Inhibidores del Factor de Necrosis Tumoral , Factores de Necrosis Tumoral/inmunología , Proteínas Virales/química
6.
Sci Rep ; 8(1): 16807, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429486

RESUMEN

The poxvirus F9 protein is a component of the vaccinia virus entry fusion complex (EFC) which consists of 11 proteins. The EFC forms a unique apparatus among viral fusion proteins and complexes. We solved the atomic structure of the F9 ectodomain at 2.10 Å. A structural comparison to the ectodomain of the EFC protein L1 indicated a similar fold and organization, in which a bundle of five α-helices is packed against two pairs of ß-strands. However, instead of the L1 myristoylation site and hydrophobic cavity, F9 possesses a protruding loop between α-helices α3 and α4 starting at Gly90. Gly90 is conserved in all poxviruses except Salmon gill poxvirus (SGPV) and Diachasmimorpha longicaudata entomopoxvirus. Phylogenetic sequence analysis of all Poxviridae F9 and L1 orthologs revealed the SGPV genome to contain the most distantly related F9 and L1 sequences compared to the vaccinia proteins studied here. The structural differences between F9 and L1 suggest functional adaptations during evolution from a common precursor that underlie the present requirement for each protein.


Asunto(s)
Fusión de Membrana , Poxviridae/química , Proteínas Virales/fisiología , Internalización del Virus , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Evolución Molecular , Filogenia , Conformación Proteica , Virus Vaccinia/química , Proteínas Virales/análisis , Proteínas Virales/química
7.
Protein Sci ; 25(11): 2066-2075, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27571536

RESUMEN

De novo protein design offers templates for engineering tailor-made protein functions and orthogonal protein interaction networks for synthetic biology research. Various computational methods have been developed to introduce functional sites in known protein structures. De novo designed protein scaffolds provide further opportunities for functional protein design. Here we demonstrate the rational design of novel tumor necrosis factor alpha (TNFα) binding proteins using a home-made grafting program AutoMatch. We grafted three key residues from a virus 2L protein to a de novo designed small protein, DS119, with consideration of backbone flexibility. The designed proteins bind to TNFα with micromolar affinities. We further optimized the interface residues with RosettaDesign and significantly improved the binding capacity of one protein Tbab1-4. These designed proteins inhibit the activity of TNFα in cellular luciferase assays. Our work illustrates the potential application of the de novo designed protein DS119 in protein engineering, biomedical research, and protein sequence-structure-function studies.


Asunto(s)
Poxviridae/química , Ingeniería de Proteínas , Programas Informáticos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Proteínas Virales/química , Humanos , Poxviridae/genética , Unión Proteica , Proteínas Virales/genética
8.
J Biol Chem ; 290(52): 30713-25, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26559969

RESUMEN

In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.


Asunto(s)
ADN de Forma Z/metabolismo , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/metabolismo , Enfermedades de los Peces/virología , Virus ARN/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Carpas , Secuencia Conservada , ADN de Forma Z/química , ADN de Forma Z/genética , Proteína Quinasa Activada por ADN/genética , Interferones/genética , Interferones/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Poxviridae/química , Poxviridae/enzimología , Poxviridae/genética , Unión Proteica , Estructura Terciaria de Proteína , Virus ARN/química , Virus ARN/genética , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas Virales/genética
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1593-603, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249341

RESUMEN

Apoptosis is a key innate defence mechanism to eliminate virally infected cells. To counteract premature host-cell apoptosis, poxviruses have evolved numerous molecular strategies, including the use of Bcl-2 proteins, to ensure their own survival. Here, it is reported that the Deerpox virus inhibitor of apoptosis, DPV022, only engages a highly restricted set of death-inducing Bcl-2 proteins, including Bim, Bax and Bak, with modest affinities. Structural analysis reveals that DPV022 adopts a Bcl-2 fold with a dimeric domain-swapped topology and binds pro-death Bcl-2 proteins via two conserved ligand-binding grooves found on opposite sides of the dimer. Structures of DPV022 bound to Bim, Bak and Bax BH3 domains reveal that a partial obstruction of the binding groove is likely to be responsible for the modest affinities of DPV022 for BH3 domains. These findings reveal that domain-swapped dimeric Bcl-2 folds are not unusual and may be found more widely in viruses. Furthermore, the modest affinities of DPV022 for pro-death Bcl-2 proteins suggest that two distinct classes of anti-apoptotic viral Bcl-2 proteins exist: those that are monomeric and tightly bind a range of death-inducing Bcl-2 proteins, and others such as DPV022 that are dimeric and only bind a very limited number of death-inducing Bcl-2 proteins with modest affinities.


Asunto(s)
Apoptosis , Infecciones por Poxviridae/virología , Poxviridae/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Poxviridae/metabolismo , Infecciones por Poxviridae/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Alineación de Secuencia , Proteínas Virales/metabolismo
10.
J Biol Chem ; 290(26): 15973-84, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25940088

RESUMEN

The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin ß. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin ß. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs.


Asunto(s)
Virus de la Viruela Vacuna/metabolismo , Poxviridae/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/química , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Señuelo del Factor de Necrosis Tumoral/química , Receptores Señuelo del Factor de Necrosis Tumoral/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Virus de la Viruela Vacuna/química , Virus de la Viruela Vacuna/genética , Humanos , Linfotoxina beta/metabolismo , Ratones , Datos de Secuencia Molecular , Poxviridae/química , Poxviridae/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Alineación de Secuencia , Receptores Señuelo del Factor de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Proteínas Virales/genética
11.
Immunol Rev ; 250(1): 199-215, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23046131

RESUMEN

During the course of evolution, viruses have captured or created a diverse array of open reading frames, which encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses that would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing, and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine-binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks.


Asunto(s)
Quimiocinas/química , Herpesviridae/inmunología , Evasión Inmune , Poxviridae/inmunología , Receptores de Quimiocina/química , Receptores Virales/química , Proteínas Virales/química , Quimiocinas/inmunología , Quimiocinas/metabolismo , Herpesviridae/química , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Humanos , Vigilancia Inmunológica , Imitación Molecular/inmunología , Poxviridae/química , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/virología , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Receptores Virales/inmunología , Receptores Virales/metabolismo , Transducción de Señal , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
12.
Virol J ; 7: 59, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20230632

RESUMEN

BACKGROUND: Poxviruses evade the immune system of the host through the action of viral encoded inhibitors that block various signalling pathways. The exact number of viral inhibitors is not yet known. Several members of the vaccinia virus A46 and N1 families, with a Bcl-2-like structure, are involved in the regulation of the host innate immune response where they act non-redundantly at different levels of the Toll-like receptor signalling pathway. N1 also maintains an anti-apoptotic effect by acting similarly to cellular Bcl-2 proteins. Whether there are related families that could have similar functions is the main subject of this investigation. RESULTS: We describe the sequence similarity existing among poxvirus A46, N1, N2 and C1 protein families, which share a common domain of approximately 110-140 amino acids at their C-termini that spans the entire N1 sequence. Secondary structure and fold recognition predictions suggest that this domain presents an all-alpha-helical fold compatible with the Bcl-2-like structures of vaccinia virus proteins N1, A52, B15 and K7. We propose that these protein families should be merged into a single one. We describe the phylogenetic distribution of this family and reconstruct its evolutionary history, which indicates an extensive gene gain in ancestral viruses and a further stabilization of its gene content. CONCLUSIONS: Based on the sequence/structure similarity, we propose that other members with unknown function, like vaccinia virus N2, C1, C6 and C16/B22, might have a similar role in the suppression of host immune response as A46, A52, B15 and K7, by antagonizing at different levels with the TLR signalling pathways.


Asunto(s)
Evolución Molecular , Genes bcl-2 , Poxviridae/genética , Proteínas Virales/genética , Análisis por Conglomerados , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Evasión Inmune , Modelos Moleculares , Filogenia , Poxviridae/química , Poxviridae/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Receptores Toll-Like/antagonistas & inhibidores , Proteínas Virales/química , Proteínas Virales/fisiología
13.
J Virol ; 84(5): 2502-10, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032175

RESUMEN

The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.


Asunto(s)
Lectinas Tipo C/química , Poxviridae/química , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Epítopos , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Poxviridae/metabolismo , Multimerización de Proteína , Alineación de Secuencia , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
14.
Microbiol Mol Biol Rev ; 73(4): 730-49, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19946139

RESUMEN

Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.


Asunto(s)
Interacciones Huésped-Patógeno , Infecciones por Poxviridae/virología , Poxviridae , Proteómica , Animales , Genoma Viral , Humanos , Poxviridae/química , Poxviridae/genética , Poxviridae/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/química , Virión/genética , Virión/metabolismo
15.
Methods Mol Biol ; 515: 1-11, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378136

RESUMEN

Fluorescent protein (FP) fusions not only allow for the convenient visualization of a protein of -interest's subcellular localization but also permit the real-time monitoring of their subcellular trafficking. The subcellular fluorescent pattern of FP-fusions can also serve as a visual marker for various subcellular processes using either live or static microscopy. We have employed FP-fusions for the study of poxvirus morphogenesis. Fusion of FP with either a viral core protein or an extracellular virion-specific protein can serve as a visual read-out for normal poxvirus morphogenesis at the subcellular level. Recombinant viruses expressing a FP-fusion, in conjunction with the deletion of a gene involved in either morphogenesis or egress, usually display an aberrant FP pattern. Functional domains in the missing protein are then mapped by complementation in-trans followed by fluorescent microscopy for analysis of the FP pattern. The methods presented here describe how to infect and transfect cells for trans-complementation for the purpose of functional domain mapping. The imaging and analysis of these cells is described.


Asunto(s)
Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Poxviridae/química , Poxviridae/metabolismo , Ensamble de Virus , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Poxviridae/genética
16.
Nat Med ; 14(8): 819-21, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18660818

RESUMEN

Protein-in-adjuvant vaccines have shown limited success against difficult diseases such as blood-stage malaria. Here we show that a recombinant adenovirus-poxvirus prime-boost immunization regime (known to induce strong T cell immunogenicity) can also induce very strong antigen-specific antibody responses, and we identify a simple complement-based adjuvant to further enhance immunogenicity. Antibodies induced against a blood-stage malaria antigen by this viral vector platform are highly effective against Plasmodium yoelii parasites in mice and against Plasmodium falciparum in vitro.


Asunto(s)
Vectores Genéticos/química , Vacunas contra la Malaria/química , Linfocitos T/virología , Vacunas Virales/química , Adenoviridae/química , Animales , Inmunoglobulina G/química , Malaria/prevención & control , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum/metabolismo , Plasmodium yoelii/metabolismo , Poxviridae/química , Linfocitos T/parasitología , Vacunas/química , Vacunas de Subunidad/química
17.
J Virol ; 81(20): 11075-83, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17670837

RESUMEN

Orf virus, the prototype parapoxvirus, is responsible for contagious ecthyma in sheep and goats. The central region of the viral genome codes for proteins highly conserved among vertebrate poxviruses and which are frequently essential for viral proliferation. Analysis of the recently published genome sequence of orf virus revealed that among such essential proteins, the protein orfv075 is an orthologue of D13, the rifampin resistance gene product critical for vaccinia virus morphogenesis. Previous studies showed that D13, arranged as "spicules," is necessary for the formation of vaccinia virus immature virions, a mandatory intermediate in viral maturation. We have determined the three-dimensional structure of recombinant orfv075 at approximately 25-A resolution by electron microscopy of two-dimensional crystals. orfv075 organizes as trimers with a tripod-like main body and a propeller-like smaller domain. The molecular envelope of orfv075 shows unexpectedly good agreement to that of a distant homologue, VP54, the major capsid protein of Paramecium bursaria Chlorella virus type 1. Our structural analysis suggests that orfv075 belongs in the double-barreled capsid protein family found in many double-stranded DNA icosahedral viruses and supports the hypothesis that the nonicosahedral poxviruses and the large icosahedral DNA viruses are evolutionarily related.


Asunto(s)
Proteínas de la Cápside/química , Virus ADN/química , Poxviridae/química , Proteínas Virales/química , Virión/química , Microscopía Electrónica , Filogenia , Conformación Proteica
18.
Biochem Pharmacol ; 73(7): 911-22, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17045247

RESUMEN

Twenty years following the description of the broad-spectrum antiviral activity of S-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA] [De Clercq E, Holý A, Rosenberg I, Sakuma T, Balzarini J, Maudgal PC. A novel selective broad-spectrum anti-DNA virus agent. Nature 1986;323:464-7], the acyclic nucleoside phosphonates have acquired a prominent therapeutic position: (i) cidofovir in the treatment of papilloma-, herpes-, adeno- and poxvirus infections, (ii) adefovir in the treatment of chronic hepatitis B virus (HBV) infections, and (iii) tenofovir in the treatment of human immunodeficiency virus (HIV) infections (AIDS). Although formally approved only for the treatment of human cytomegalovirus (HCMV) retinitis in AIDS patients, cidofovir has been used successfully in the treatment of various other DNA virus infections, particularly human papilloma virus (HPV)-associated lesions. Adefovir dipivoxil has become a standard therapy for HBV infections, especially when resistant to lamivudine. Tenofovir disoproxil fumarate (TDF) is the corner stone of the triple-drug (TDF, emtricitabine, and efavirenz) combination therapy for AIDS, and TDF, alone or combined with emtricitabine may in the future evolve to the standard therapy of hepatitis B. Guided by the results obtained with tenofovir in the prevention of parenteral, intravaginal and perinatal infections with simian immunodeficiency virus in monkeys, and the safety profile gathered with TDF in humans with AIDS over the past 5 years since TDF was licensed for clinical use, it should be further pursued for the pre- and post-exposure prophylaxis of HIV infections in humans. Meanwhile, new classes of both acyclic (i.e. PMPO-DAPy, PMEO-DAPy, HPMPO-DAPy) and cyclic nucleoside phosphonates (i.e. PMDTA, PMDTT, GS9148) have been accredited with an antiviral potency and selectivity similar to those of cidofovir, adefovir and/or tenofovir.


Asunto(s)
Antivirales/farmacología , Organofosfonatos/farmacología , Virus/efectos de los fármacos , Adenina/análogos & derivados , Adenina/química , Adenina/farmacología , Animales , Antivirales/química , Cidofovir , Citosina/análogos & derivados , Citosina/química , Citosina/farmacología , VIH/química , VIH/efectos de los fármacos , Hepacivirus/química , Hepacivirus/efectos de los fármacos , Virus de la Hepatitis B/química , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Organofosfonatos/química , Papillomaviridae/química , Papillomaviridae/efectos de los fármacos , Poxviridae/química , Poxviridae/efectos de los fármacos , Tenofovir , Virosis/tratamiento farmacológico , Virosis/prevención & control , Virus/química
19.
Proc Natl Acad Sci U S A ; 103(38): 13985-90, 2006 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-16963564

RESUMEN

Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the structure of an orthopoxvirus vCCI in complex with a human CC chemokine, MIP-1beta (macrophage inflammatory protein 1beta). vCCI binds to the chemokine with 1:1 stoichiometry, forming a complex of 311 aa. vCCI uses residues from its beta-sheet II to interact with a surface of MIP-1beta that includes residues adjacent to its N terminus, as well as residues in the 20's region and the 40's loop. This structure reveals the strategy used by vCCI to tightly bind numerous chemokines while retaining selectivity for the CC chemokine subfamily.


Asunto(s)
Quimiocinas CC/antagonistas & inhibidores , Poxviridae/química , Conformación Proteica , Proteínas Virales/química , Secuencia de Aminoácidos , Animales , Quimiocina CCL4 , Quimiocinas CC/química , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conejos , Alineación de Secuencia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia
20.
Proc Natl Acad Sci U S A ; 102(12): 4240-5, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15761054

RESUMEN

Although eradicated from nature more than two decades ago, the threat of smallpox has reemerged because of concerns over its use as a biological weapon. We present the structure of the poxvirus L1 protein, a molecule that is conserved throughout the poxvirus family and is nearly identical in vaccinia virus and in variola virus, which causes smallpox. L1 is a myristoylated envelope protein that is a potent target for neutralizing antibodies and an important component of current experimental vaccines. The L1 structure reveals a hydrophobic cavity located adjacent to its N terminus. The cavity would be capable of shielding the myristate moiety, which is essential for virion assembly. The structure of L1 is a step in the elucidation of molecular mechanisms common to all poxviruses that may stimulate the design of safer vaccines and new antipoxvirus drugs.


Asunto(s)
Poxviridae/química , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales , Secuencia de Bases , Cristalografía por Rayos X , ADN Viral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Disulfuros/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Ácidos Mirísticos/química , Pruebas de Neutralización , Poxviridae/genética , Poxviridae/inmunología , Conformación Proteica , Homología de Secuencia de Aminoácido , Vacuna contra Viruela/química , Vacuna contra Viruela/genética , Vacuna contra Viruela/inmunología , Electricidad Estática , Virus Vaccinia/química , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Virus de la Viruela/química , Virus de la Viruela/genética , Virus de la Viruela/inmunología , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA