Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Pathol ; 259(2): 220-232, 2023 02.
Article in English | MEDLINE | ID: mdl-36385700

ABSTRACT

Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Neoplasm Recurrence, Local , Receptors, Fibroblast Growth Factor/genetics , Signal Transduction , Cell Line, Tumor
2.
J Pathol Clin Res ; 8(3): 279-293, 2022 05.
Article in English | MEDLINE | ID: mdl-35289095

ABSTRACT

Pure squamous cell carcinoma (SCC) is the most common pure variant form of bladder cancer, found in 2-5% of cases. It often presents late and is unresponsive to cisplatin-based chemotherapy. The molecular features of these tumours have not been elucidated in detail. We carried out whole-exome sequencing (WES), copy number, and transcriptome analysis of bladder SCC. Muscle-invasive bladder cancer (MIBC) samples with no evidence of squamous differentiation (non-SD) were used for comparison. To assess commonality of features with urothelial carcinoma with SD, we examined data from SD samples in The Cancer Genome Atlas (TCGA) study of MIBC. TP53 was the most commonly mutated gene in SCC (64%) followed by FAT1 (45%). Copy number analysis revealed complex changes in SCC, many differing from those in samples with SD. Gain of 5p and 7p was the most common feature, and focal regions on 5p included OSMR and RICTOR. In addition to 9p deletions, we found some samples with focal gain of 9p24 containing CD274 (PD-L1). Loss of 4q35 containing FAT1 was found in many samples such that all but one sample analysed by WES had FAT1 mutation or deletion. Expression features included upregulation of oncostatin M receptor (OSMR), metalloproteinases, metallothioneins, keratinisation genes, extracellular matrix components, inflammatory response genes, stem cell markers, and immune response modulators. Exploration of differentially expressed transcription factors identified BNC1 and TFAP2A, a gene repressed by PPARG, as the most upregulated factors. Known urothelial differentiation factors were downregulated along with 72 Kruppel-associated (KRAB) domain-containing zinc finger family protein (KZFP) genes. Novel therapies are urgently needed for these tumours. In addition to upregulated expression of EGFR, which has been suggested as a therapeutic target in basal/squamous bladder cancer, we identified expression signatures that indicate upregulated OSMR and YAP/TAZ signalling. Preclinical evaluation of the effects of inhibition of these pathways alone or in combination is merited.


Subject(s)
Carcinoma, Squamous Cell , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Humans , Oncostatin M Receptor beta Subunit , Receptors, Oncostatin M/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics
3.
Cell Rep Med ; 2(12): 100472, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028613

ABSTRACT

Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.


Subject(s)
Gene Expression Profiling , Muscles/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Gene Dosage , Gene Expression Regulation, Neoplastic , Humans , Mutation/genetics , Mycobacterium bovis , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , PPAR gamma/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology
4.
Sci Rep ; 9(1): 5740, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952872

ABSTRACT

Activating mutations of fibroblast growth factor receptor 3 (FGFR3) are common in urothelial carcinoma of the bladder (UC). Silencing or inhibition of mutant FGFR3 in bladder cancer cell lines is associated with decreased malignant potential, confirming its important driver role in UC. However, understanding of how FGFR3 activation drives urothelial malignant transformation remains limited. We have previously shown that mutant FGFR3 alters the cell-cell and cell-matrix adhesion properties of urothelial cells, resulting in loss of contact-inhibition of proliferation. In this study, we investigate a transcription factor of the ETS-family, ETV5, as a putative effector of FGFR3 signalling in bladder cancer. We show that FGFR3 signalling induces a MAPK/ERK-mediated increase in ETV5 levels, and that this results in increased level of TAZ, a co-transcriptional regulator downstream of the Hippo signalling pathway involved in cell-contact inhibition. We also demonstrate that ETV5 is a key downstream mediator of the oncogenic effects of mutant FGFR3, as its knockdown in FGFR3-mutant bladder cancer cell lines is associated with reduced proliferation and anchorage-independent growth. Overall this study advances our understanding of the molecular alterations occurring during urothelial malignant transformation and indicates TAZ as a possible therapeutic target in FGFR3-dependent bladder tumours.


Subject(s)
Carcinoma, Transitional Cell/metabolism , DNA-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Urinary Bladder Neoplasms/metabolism , Urothelium/metabolism , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Cell Proliferation , Hippo Signaling Pathway , Humans , Phosphorylation , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology , Urothelium/pathology
5.
Cancer Cell ; 32(5): 701-715.e7, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29136510

ABSTRACT

Bladder cancer incurs a higher lifetime treatment cost than other cancers due to frequent recurrence of non-invasive disease. Improved prognostic biomarkers and localized therapy are needed for this large patient group. We defined two major genomic subtypes of primary stage Ta tumors. One of these was characterized by loss of 9q including TSC1, increased KI67 labeling index, upregulated glycolysis, DNA repair, mTORC1 signaling, features of the unfolded protein response, and altered cholesterol homeostasis. Comparison with muscle-invasive bladder cancer mutation profiles revealed lower overall mutation rates and more frequent mutations in RHOB and chromatin modifier genes. More mutations in the histone lysine demethylase KDM6A were present in non-invasive tumors from females than males.


Subject(s)
Carcinoma, Transitional Cell/metabolism , Histone Demethylases/genetics , Metabolomics/methods , Mutation , Nuclear Proteins/genetics , Urinary Bladder Neoplasms/metabolism , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Frequency , Genomics/methods , HEK293 Cells , Histone Demethylases/metabolism , Humans , Male , Metabolome/genetics , Nuclear Proteins/metabolism , Sex Factors , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
6.
Development ; 142(24): 4340-50, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26525672

ABSTRACT

Heart valve formation initiates when endothelial cells of the heart transform into mesenchyme and populate the cardiac cushions. The transcription factor SOX9 is highly expressed in the cardiac cushion mesenchyme, and is essential for heart valve development. Loss of Sox9 in mouse cardiac cushion mesenchyme alters cell proliferation, embryonic survival, and valve formation. Despite this important role, little is known about how SOX9 regulates heart valve formation or its transcriptional targets. Therefore, we mapped putative SOX9 binding sites by ChIP-Seq in E12.5 heart valves, a stage at which the valve mesenchyme is actively proliferating and initiating differentiation. Embryonic heart valves have been shown to express a high number of genes that are associated with chondrogenesis, including several extracellular matrix proteins and transcription factors that regulate chondrogenesis. Therefore, we compared regions of putative SOX9 DNA binding between E12.5 heart valves and E12.5 limb buds. We identified context-dependent and context-independent SOX9-interacting regions throughout the genome. Analysis of context-independent SOX9 binding suggests an extensive role for SOX9 across tissues in regulating proliferation-associated genes including key components of the AP-1 complex. Integrative analysis of tissue-specific SOX9-interacting regions and gene expression profiles on Sox9-deficient heart valves demonstrated that SOX9 controls the expression of several transcription factors with previously identified roles in heart valve development, including Twist1, Sox4, Mecom and Pitx2. Together, our data identify SOX9-coordinated transcriptional hierarchies that control cell proliferation and differentiation during valve formation.


Subject(s)
Gene Expression Regulation, Developmental , Heart Valves/embryology , Heart Valves/metabolism , SOX9 Transcription Factor/metabolism , Animals , Cell Proliferation , Chromatin Immunoprecipitation , DNA/metabolism , Extremities/embryology , Gene Regulatory Networks , Mice , Models, Biological , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Initiation Site
7.
Nat Commun ; 6: 7953, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26245647

ABSTRACT

Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial-mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Binding Sites , Cell Movement , Cell Survival , Chemotaxis , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition , HEK293 Cells , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , MEF2 Transcription Factors/genetics , Mutation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-6 , Transcriptional Activation , Transcriptome
8.
Cell Rep ; 9(1): 261-271, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25263553

ABSTRACT

Cell fate acquisition is heavily influenced by direct interactions between master regulators and tissue-specific enhancers. However, it remains unclear how lineage-specifying transcription factors, which are often expressed in both progenitor and mature cell populations, influence cell differentiation. Using in vivo mouse liver development as a model, we identified thousands of enhancers that are bound by the master regulators HNF4A and FOXA2 in a differentiation-dependent manner, subject to chromatin remodeling, and associated with differentially expressed target genes. Enhancers exclusively occupied in the embryo were found to be responsive to developmentally regulated TEAD2 and coactivator YAP1. Our data suggest that Hippo signaling may affect hepatocyte differentiation by influencing HNF4A and FOXA2 interactions with temporal enhancers. In summary, transcription factor-enhancer interactions are not only tissue specific but also differentiation dependent, which is an important consideration for researchers studying cancer biology or mammalian development and/or using transformed cell lines.


Subject(s)
Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Differentiation/physiology , Female , Gene Expression , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 4/genetics , Hippo Signaling Pathway , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Signal Transduction
9.
Development ; 141(19): 3772-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25209250

ABSTRACT

Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.


Subject(s)
Body Patterning/physiology , Endoderm/physiology , Gastrointestinal Tract/embryology , Gene Expression Regulation, Developmental/physiology , Gene Regulatory Networks/physiology , Glycoproteins/metabolism , Signal Transduction/physiology , Activins/metabolism , Aldehyde Oxidoreductases/metabolism , Animals , Electrophoretic Mobility Shift Assay , Gene Regulatory Networks/genetics , Genetic Vectors/genetics , HMGB Proteins/metabolism , Intercellular Signaling Peptides and Proteins , Luciferases , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptors, Retinoic Acid/metabolism , SOXF Transcription Factors/metabolism
10.
J Biol Chem ; 289(7): 4244-61, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24338480

ABSTRACT

Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.


Subject(s)
Apolipoproteins B/metabolism , Cholesterol/biosynthesis , Endoplasmic Reticulum/metabolism , Lipid Metabolism , Monomeric GTP-Binding Proteins/metabolism , Vesicular Transport Proteins/metabolism , Apolipoproteins B/genetics , COP-Coated Vesicles/genetics , COP-Coated Vesicles/metabolism , Cell Line , Cholesterol/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , Humans , Hypobetalipoproteinemias/genetics , Hypobetalipoproteinemias/metabolism , Hypobetalipoproteinemias/pathology , Lipids/genetics , Liver/metabolism , Liver/pathology , Malabsorption Syndromes/genetics , Malabsorption Syndromes/metabolism , Malabsorption Syndromes/pathology , Monomeric GTP-Binding Proteins/genetics , Vesicular Transport Proteins/genetics
11.
Hepatology ; 57(6): 2491-501, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23315977

ABSTRACT

MicroRNAs (miRNAs) are recently discovered small RNA molecules that regulate developmental processes, such as proliferation, differentiation, and apoptosis; however, the identity of miRNAs and their functions during liver development are largely unknown. Here we investigated the miRNA and gene expression profiles for embryonic day (E)8.5 endoderm, E14.5 Dlk1(+) liver cells (hepatoblasts), and adult liver by employing Illumina sequencing. We found that miRNAs were abundantly expressed at all three stages. Using K-means clustering analysis, 13 miRNA clusters with distinct temporal expression patterns were identified. mir302b, an endoderm-enriched miRNA, was identified as an miRNA whose predicted targets are expressed highly in E14.5 hepatoblasts but low in the endoderm. We validated the expression of mir302b in the endoderm by whole-mount in situ hybridization. Interestingly, mir20a, the most highly expressed miRNA in the endoderm library, was also predicted to regulate some of the same targets as mir302b. We found that through targeting Tgfbr2, mir302b and mir20a are able to regulate transforming growth factor beta (TGFß) signal transduction. Moreover, mir302b can repress liver markers in an embryonic stem cell differentiation model. Collectively, we uncovered dynamic patterns of individual miRNAs during liver development, as well as miRNA networks that could be essential for the specification and differentiation of liver progenitors. (HEPATOLOGY 2013).


Subject(s)
Liver/embryology , MicroRNAs/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Benzodioxoles/pharmacology , Cell Differentiation , Embryonic Stem Cells/physiology , Endoderm/metabolism , Female , Gastrointestinal Tract/metabolism , Gene Expression Profiling , Genome , Imidazoles/pharmacology , Liver/metabolism , Male , Mice , Organogenesis , Protein Serine-Threonine Kinases/metabolism , Pyridines/pharmacology , RNA, Messenger/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , p300-CBP Transcription Factors/metabolism
12.
Respirology ; 16(2): 210-22, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21077988

ABSTRACT

Next generation sequencing (NGS) has pushed back the limitations of prior sequencing technologies to advance genomic knowledge infinitely by allowing cost-effective, rapid sequencing to become a reality. Genome-wide transcriptional profiling can be achieved using NGS with either Tag-Seq, in which short tags of cDNA represent a gene, or RNA-Seq, in which the entire transcriptome is sequenced. Furthermore, the level and diversity of miRNA within different tissues or cell types can be monitored by specifically sequencing small RNA. The biological mechanisms underlying differential gene regulation can also be explored by coupling chromatin immunoprecipitation with NGS (ChIP-Seq). Using this methodology genome-wide binding sites for transcription factors, RNAP II, epigenetic modifiers and the distribution of modified histones can be assessed. The superior, high-resolution data generated by adopting this sequencing technology allows researchers to distinguish the precise genomic location bound by a protein and correlate this with observed gene expression patterns. Additional methods have also been established to examine other factors influencing gene regulation such as DNA methylation or chromatin conformation on a genome-wide scale. Within any research setting, these techniques can provide relevant data and answer numerous questions about gene expression and regulation. The advances made by pairing NGS with strategic experimental protocols will continue to impact the research community.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation , Sequence Analysis/methods , Base Sequence , Chromatin/genetics , Chromatin Immunoprecipitation/instrumentation , Chromatin Immunoprecipitation/methods , DNA Methylation/genetics , Gene Expression Profiling/instrumentation , Histones/chemistry , Histones/genetics , Humans , RNA Polymerase II/genetics , RNA, Small Interfering/genetics , Sequence Analysis/instrumentation , Transcription Factors/genetics
13.
Development ; 137(15): 2483-92, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20573702

ABSTRACT

Pluripotent cells develop within the inner cell mass of blastocysts, a mosaic of cells surrounded by an extra-embryonic layer, the trophectoderm. We show that a set of somatic lineage regulators (including Hox, Gata and Sox factors) that carry bivalent chromatin enriched in H3K27me3 and H3K4me2 are selectively targeted by Suv39h1-mediated H3K9me3 and de novo DNA methylation in extra-embryonic versus embryonic (pluripotent) lineages, as assessed both in blastocyst-derived stem cells and in vivo. This stably repressed state is linked with a loss of gene priming for transcription through the exclusion of PRC1 (Ring1B) and RNA polymerase II complexes at bivalent, lineage-inappropriate genes upon trophoblast lineage commitment. Collectively, our results suggest a mutually exclusive role for Ring1B and Suv39h1 in regulating distinct chromatin states at key developmental genes and propose a novel mechanism by which lineage specification can be reinforced during early development.


Subject(s)
Chromatin/chemistry , Gene Expression Regulation, Developmental , Methyltransferases/physiology , Repressor Proteins/physiology , Animals , Blastocyst , Cell Lineage , Chromatin/metabolism , DNA Methylation , Gene Expression Profiling , Gene Silencing , Methyltransferases/metabolism , Mice , Models, Biological , Polycomb Repressive Complex 1 , RNA Interference , RNA Polymerase II/metabolism , Repressor Proteins/metabolism , Trophoblasts/metabolism , Ubiquitin-Protein Ligases
14.
Epigenetics Chromatin ; 3: 1, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20157423

ABSTRACT

BACKGROUND: During early mouse development, two extra-embryonic lineages form alongside the future embryo: the trophectoderm (TE) and the primitive endoderm (PrE). Epigenetic changes known to take place during these early stages include changes in DNA methylation and modified histones, as well as dynamic changes in gene expression. RESULTS: In order to understand the role and extent of chromatin-based changes for lineage commitment within the embryo, we examined the epigenetic profiles of mouse embryonic stem (ES), trophectoderm stem (TS) and extra-embryonic endoderm (XEN) stem cell lines that were derived from the inner cell mass (ICM), TE and PrE, respectively. As an initial indicator of the chromatin state, we assessed the replication timing of a cohort of genes in each cell type, based on data that expressed genes and acetylated chromatin domains, generally, replicate early in S-phase, whereas some silent genes, hypoacetylated or condensed chromatin tend to replicate later. We found that many lineage-specific genes replicate early in ES, TS and XEN cells, which was consistent with a broadly 'accessible' chromatin that was reported previously for multiple ES cell lines. Close inspection of these profiles revealed differences between ES, TS and XEN cells that were consistent with their differing lineage affiliations and developmental potential. A comparative analysis of modified histones at the promoters of individual genes showed that in TS and ES cells many lineage-specific regulator genes are co-marked with modifications associated with active (H4ac, H3K4me2, H3K9ac) and repressive (H3K27me3) chromatin. However, in XEN cells several of these genes were marked solely by repressive modifications (such as H3K27me3, H4K20me3). Consistent with TS and XEN having a restricted developmental potential, we show that these cells selectively reprogramme somatic cells to induce the de novo expression of genes associated with extraembryonic differentiation. CONCLUSIONS: These data provide evidence that the diversification of defined embryonic and extra-embryonic lineages is accompanied by chromatin remodelling at specific loci. Stem cell lines from the ICM, TE and PrE can each dominantly reprogramme somatic cells but reset gene expression differently, reflecting their separate lineage identities and increasingly restricted developmental potentials.

SELECTION OF CITATIONS
SEARCH DETAIL
...