Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791926

ABSTRACT

The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.

2.
J Pathol ; 262(1): 90-104, 2024 01.
Article in English | MEDLINE | ID: mdl-37929635

ABSTRACT

Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor ß availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Myofibroblasts , Pancreatic Neoplasms , Animals , Humans , Mice , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Cell Differentiation , Collagen/metabolism , Myofibroblasts/metabolism , Pancreatic Neoplasms/pathology , Proteomics
3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628794

ABSTRACT

Our understanding of the molecular mechanisms underlying cancer development and evolution have evolved rapidly over recent years, and the variation from one patient to another is now widely recognized. Consequently, one-size-fits-all approaches to the treatment of cancer have been superseded by precision medicines that target specific disease characteristics, promising maximum clinical efficacy, minimal safety concerns, and reduced economic burden. While precision oncology has been very successful in the treatment of some tumors with specific characteristics, a large number of patients do not yet have access to precision medicines for their disease. The success of next-generation precision oncology depends on the discovery of new actionable disease characteristics, rapid, accurate, and comprehensive diagnosis of complex phenotypes within each patient, novel clinical trial designs with improved response rates, and worldwide access to novel targeted anticancer therapies for all patients. This review outlines some of the current technological trends, and highlights some of the complex multidisciplinary efforts that are underway to ensure that many more patients with cancer will be able to benefit from precision oncology in the near future.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Precision Medicine , Medical Oncology , Interdisciplinary Studies , Phenotype
4.
NPJ Breast Cancer ; 9(1): 9, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864079

ABSTRACT

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer. Virtually all women with DCIS are treated, despite evidence suggesting up to half would remain with stable, non-threatening, disease. Overtreatment thus presents a pressing issue in DCIS management. To understand the role of the normally tumour suppressive myoepithelial cell in disease progression we present a 3D in vitro model incorporating both luminal and myoepithelial cells in physiomimetic conditions. We demonstrate that DCIS-associated myoepithelial cells promote striking myoepithelial-led invasion of luminal cells, mediated by the collagenase MMP13 through a non-canonical TGFß - EP300 pathway. In vivo, MMP13 expression is associated with stromal invasion in a murine model of DCIS progression and is elevated in myoepithelial cells of clinical high-grade DCIS cases. Our data identify a key role for myoepithelial-derived MMP13 in facilitating DCIS progression and point the way towards a robust marker for risk stratification in DCIS patients.

5.
Biochem J ; 479(13): 1467-1486, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35730579

ABSTRACT

The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency to assess cardiac development and function using high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were also assessed. Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed up-regulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, the requirement for PKN2 in adult mice was explored using the constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in these haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. It is concluded that cardiomyocyte PKN2 is essential for heart development and the formation of compact myocardium and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.


Subject(s)
Cardiomyopathies , Hypertension , Protein Kinase C/metabolism , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Female , Hypertension/metabolism , Hypertension/pathology , Mice , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Pregnancy
6.
J Pathol ; 257(4): 526-544, 2022 07.
Article in English | MEDLINE | ID: mdl-35533046

ABSTRACT

Cancer-associated fibroblasts (CAFs) have conflicting roles in the suppression and promotion of cancer. Current research focuses on targeting the undesirable properties of CAFs, while attempting to maintain tumour-suppressive roles. CAFs have been widely associated with primary or secondary therapeutic resistance, and strategies to modify CAF function have therefore largely focussed on their combination with existing therapies. Despite significant progress in preclinical studies, clinical translation of CAF targeted therapies has achieved limited success. Here we will review our emerging understanding of heterogeneous CAF populations in tumour biology and use examples from pancreatic ductal adenocarcinoma to explore why successful clinical targeting of protumourigenic CAF functions remains elusive. Single-cell technologies have allowed the identification of CAF subtypes with a differential impact on prognosis and response to therapy, but currently without clear consensus. Identification and pharmacological targeting of CAF subtypes associated with immunotherapy response offers new hope to expand clinical options for pancreatic cancer. Various CAF subtype markers may represent biomarkers for patient stratification, to obtain enhanced response with existing and emerging combinatorial therapeutic strategies. Thus, CAF subtyping is the next frontier in understanding and exploiting the tumour microenvironment for therapeutic benefit. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Biomarkers , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
7.
Methods Enzymol ; 667: 455-505, 2022.
Article in English | MEDLINE | ID: mdl-35525551

ABSTRACT

HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.


Subject(s)
Receptor, ErbB-2 , Receptor, ErbB-3 , Humans , Nucleotides/metabolism , Phosphorylation , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction/physiology
8.
Cell Rep ; 38(4): 110227, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35081338

ABSTRACT

In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.


Subject(s)
Neoplasm Invasiveness/pathology , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/pathology , Animals , Humans , Mice , Pancreatic Stellate Cells/metabolism , Phenotype , Protein Kinase C/metabolism , Tumor Microenvironment/physiology
9.
Immunity ; 48(6): 1144-1159.e5, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29884460

ABSTRACT

PKCß-null (Prkcb-/-) mice are severely immunodeficient. Here we show that mice whose B cells lack PKCß failed to form germinal centers and plasma cells, which undermined affinity maturation and antibody production in response to immunization. Moreover, these mice failed to develop plasma cells in response to viral infection. At the cellular level, we have shown that Prkcb-/- B cells exhibited defective antigen polarization and mTORC1 signaling. While altered antigen polarization impaired antigen presentation and likely restricted the potential of GC development, defective mTORC1 signaling impaired metabolic reprogramming, mitochondrial remodeling, and heme biosynthesis in these cells, which altogether overwhelmingly opposed plasma cell differentiation. Taken together, our study reveals mechanistic insights into the function of PKCß as a key regulator of B cell polarity and metabolic reprogramming that instructs B cell fate.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Plasma Cells/immunology , Protein Kinase C beta/immunology , Animals , Heme/biosynthesis , Mice , Mice, Knockout , Mitochondria/immunology , Mitochondria/metabolism , Plasma Cells/cytology
11.
Cancer Cell ; 32(5): 701-715.e7, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29136510

ABSTRACT

Bladder cancer incurs a higher lifetime treatment cost than other cancers due to frequent recurrence of non-invasive disease. Improved prognostic biomarkers and localized therapy are needed for this large patient group. We defined two major genomic subtypes of primary stage Ta tumors. One of these was characterized by loss of 9q including TSC1, increased KI67 labeling index, upregulated glycolysis, DNA repair, mTORC1 signaling, features of the unfolded protein response, and altered cholesterol homeostasis. Comparison with muscle-invasive bladder cancer mutation profiles revealed lower overall mutation rates and more frequent mutations in RHOB and chromatin modifier genes. More mutations in the histone lysine demethylase KDM6A were present in non-invasive tumors from females than males.


Subject(s)
Carcinoma, Transitional Cell/metabolism , Histone Demethylases/genetics , Metabolomics/methods , Mutation , Nuclear Proteins/genetics , Urinary Bladder Neoplasms/metabolism , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Frequency , Genomics/methods , HEK293 Cells , Histone Demethylases/metabolism , Humans , Male , Metabolome/genetics , Nuclear Proteins/metabolism , Sex Factors , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
12.
Oncotarget ; 8(49): 84685-84696, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156676

ABSTRACT

Mammalian target of rapamycin (mTOR) is a central regulator of growth and metabolism. mTOR resides in two distinct multi-protein complexes - mTORC1 and mTORC2 - with distinct upstream regulators and downstream targets. While it is possible to specifically inhibit mTORC1 with rapamycin, or inhibit both mTOR complexes together with ATP pocket directed mTOR kinase inhibitors, it is not possible to assess the specific roles for mTORC2 pharmacologically. To overcome this, we have developed a novel, inducible, dominant negative system for disrupting substrate recruitment to mTORC2. Previously we identified the mTORC2 specific subunit Sin1 as a direct binding partner for AGC kinases Akt and PKC. Sin1 mutants, which retain the ability to bind Rictor and mTOR, but fail to recruit their AGC client kinases, inhibit AKT and PKC priming and block cell growth. In this study, we demonstrate that uncoupling mTORC2 from AGC kinases in DLD1 colon cancer cells inhibits Akt activation and blocks tumour growth in vivo. Further we demonstrate, using time resolved two-site amplified FRET (A-FRET) analysis of xenograft tumours, that inhibition of tumour growth correlates with the degree of mTORC2 uncoupling from its downstream targets, as demonstrated for Akt. These data add weight to the body of evidence that mTORC2 represents a pharmacological target in cancer independently of mTORC1.

13.
Oncotarget ; 7(33): 53047-53063, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27344175

ABSTRACT

Platelet derived growth factor receptors (PDGFRs) play an important role in tumor pathogenesis, and they are frequently overexpressed in glioblastoma (GBM). Earlier we have shown a higher protein expression of PDGFR isoforms (α and ß) in peritumoral-tissue derived cancer stem cells (p-CSC) than in tumor core (c-CSC) of several GBM affected patients. In the current study, in order to assess the activity of PDGFRα/PDGF-AA signaling axis, we performed time course experiments to monitor the effects of exogenous PDGF-AA on the expression of downstream target genes in c-CSC vs p-CSC. Interestingly, in p-CSC we detected the upregulation of Y705-phosphorylated Stat3, concurrent with a decrement of Rb1 protein in its active state, within minutes of PDGF-AA addition. This finding prompted us to elucidate the role of PDGFRα in self-renewal, invasion and differentiation in p-CSC by using short hairpin RNA depletion of PDGFRα expression. Notably, in PDGFRα-depleted cells, protein analysis revealed attenuation of stemness-related and glial markers expression, alongside early activation of the neuronal marker MAP2a/b that correlated with the induction of tumor suppressor Rb1. The in vitro reduction of the invasive capacity of PDGFRα-depleted CSC as compared to parental cells correlated with the downmodulation of markers of epithelial-mesenchymal transition phenotype and angiogenesis. Surprisingly, we observed the induction of anti-apoptotic proteins and compensatory oncogenic signals such as EDN1, EDNRB, PRKCB1, PDGF-C and PDGF-D. To conclude, we hypothesize that the newly discovered PDGFRα/Stat3/Rb1 regulatory axis might represent a potential therapeutic target for GBM treatment.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Retinoblastoma Binding Proteins/metabolism , STAT3 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Adult , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/drug effects , Phosphorylation/drug effects , Platelet-Derived Growth Factor/pharmacology , RNA Interference , Receptor, Platelet-Derived Growth Factor alpha/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Cell Rep ; 14(3): 440-448, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26774483

ABSTRACT

In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality.


Subject(s)
Mesoderm/metabolism , Protein Kinase C/genetics , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development/drug effects , Genes, Reporter , Heart/growth & development , Mesoderm/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Scanning , Myocardium/metabolism , Myocardium/pathology , Protein Kinase C/deficiency , Protein Kinase C/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology
15.
Biochem Soc Trans ; 42(1): 35-41, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24450624

ABSTRACT

The empirical derivation of PKC (protein kinase C) domain structures and those modelled by homology or imputed from protein behaviour have been extraordinarily valuable both in the elucidation of PKC pathway mechanisms and in the general lessons that extrapolate to other signalling pathways. For PKC family members, there are many domain/subdomain structures and models, covering all of the known domains, variably present in this family of protein serine/threonine kinases (C1, C2, PB1, HR1, kinase domains). In addition to these structures, there are a limited number of complexes defined, including the structure of the PKCε V3-14-3-3 complex. In the context of structure-driven insights into PKC pathways, there are several broadly applicable principles and mechanisms relevant to the operation of and intervention in signalling pathways. These principles have an impact in unexpected ways, from the regulation of membrane targeting, through strategies for pharmacological intervention, to biomarkers.


Subject(s)
Protein Kinase C/chemistry , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/physiology , Animals , Catalytic Domain , Enzyme Activation , Humans , Models, Molecular , Protein Kinase C/physiology , Protein Structure, Quaternary
16.
Carcinogenesis ; 35(2): 396-406, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24072773

ABSTRACT

Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.


Subject(s)
Cell Polarity , Cell Transformation, Neoplastic/pathology , Cysts/pathology , Epithelial Cells/pathology , Isoenzymes/metabolism , Morphogenesis/physiology , Protein Kinase C/metabolism , Spheroids, Cellular/pathology , Animals , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Cysts/metabolism , Dogs , Epithelial Cells/metabolism , Genes, ras/physiology , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Kidney/metabolism , Kidney/pathology , Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , RNA, Small Interfering/genetics , Receptor, ErbB-2/metabolism , Spheroids, Cellular/metabolism
17.
Biochem Soc Trans ; 41(4): 1083-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23863183

ABSTRACT

Pseudokinases, the catalytically impaired component of the kinome, have recently been found to share more properties with active kinases than previously thought. In many pseudokinases, ATP binding and even some activity is preserved, highlighting these proteins as potential drug targets. In both active kinases and pseudokinases, binding of ATP or drugs in the nucleotide-binding pocket can stabilize specific conformations required for activity and protein-protein interactions. We discuss the implications of locking particular conformations in a selection of (pseudo)kinases and the dual potential impact on the druggability of these proteins.


Subject(s)
Protein Kinases/metabolism , Biocatalysis , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Protein Kinases/drug effects
18.
Biochem J ; 439(2): 287-97, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21806543

ABSTRACT

The protein kinase TOR (target of rapamycin) is a key regulator of cell growth and metabolism with significant clinical relevance. In mammals, TOR signals through two distinct multi-protein complexes, mTORC1 and mTORC2 (mammalian TOR complex 1 and 2 respectively), the subunits of which appear to define the operational pathways. Rapamycin selectively targets mTORC1 function, and the emergence of specific ATP-competitive kinase inhibitors has enabled assessment of dual mTORC1 and mTORC2 blockade. Little is known, however, of the molecular action of mTORC2 components or the relative importance of targeting this pathway. In the present study, we have identified the mTORC2 subunit Sin1 as a direct binding partner of the PKC (protein kinase C) ε kinase domain and map the interaction to the central highly conserved region of Sin1. Exploiting the conformational dependence for PKC phosphorylation, we demonstrate that mTORC2 is essential for acute priming of PKC. Inducible expression of Sin1 mutants, lacking the PKC-interaction domain, displaces endogenous Sin1 from mTORC2 and disrupts PKC phosphorylation. PKB (protein kinase B)/Akt phosphorylation is also suppressed by these Sin1 mutants, but not the mTORC1 substrate p70(S6K) (S6 kinase), providing evidence that Sin1 serves as a selectivity adaptor for the recruitment of mTORC2 targets. This inducible selective mTORC2 intervention is used to demonstrate a key role for mTORC2 in cell proliferation in three-dimensional culture.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Cell Line , Humans , Phosphorylation
19.
Biochem Soc Trans ; 39(2): 472-6, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21428922

ABSTRACT

Targeting the protein kinase ATP-binding pocket provides a significant opportunity for the treatment of disease. Recent studies have revealed a central activity-independent role for nucleotide pocket occupation in the allosteric behaviour of diverse kinases. Regulation of nucleotide pocket conformation with either nucleotides or ATP competitive inhibitors has revealed an added dimension to the targeting of kinases. In the present paper, using PKC (protein kinase C) as a paradigm, the liabilities and opportunities associated with the occupation of the nucleotide pocket are explored.


Subject(s)
Allosteric Regulation/physiology , Binding, Competitive/physiology , Nucleotides/metabolism , Protein Kinases/metabolism , Animals , Binding Sites/physiology , Humans , Models, Biological , Protein Binding/physiology , Protein Interaction Domains and Motifs/physiology , Protein Kinases/chemistry
20.
Nat Rev Mol Cell Biol ; 11(2): 103-12, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20094051

ABSTRACT

Networks of signal transducers determine the conversion of environmental cues into cellular actions. Among the main players in these networks are protein kinases, which can acutely and reversibly modify protein functions to influence cellular events. One group of kinases, the protein kinase C (PKC) family, have been increasingly implicated in the organization of signal propagation, particularly in the spatial distribution of signals. Examples of where and how various PKC isoforms direct this tier of signal organization are becoming more evident.


Subject(s)
Protein Kinase C/metabolism , Signal Transduction , Animals , Cell Communication , Cell Movement , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Protein Kinase C/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...