Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(6)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178258

ABSTRACT

The bovine viral diarrhea virus (BVDV), a pestivirus from the family of Flaviviridae is ubiquitous and causes a range of clinical manifestations in livestock, mainly cattle. Two quinolinecarboxamide analogues were identified in a CPE-based screening effort, as selective inhibitors of the in vitro bovine viral diarrhea virus (BVDV) replication, i.e., TO505-6180/CSFCI (average EC50 = 0.07 µM, SD = 0.02 µM, CC50 > 100 µM) and TO502-2403/CSFCII (average EC50 = 0.2 µM, SD = 0.06 µM, CC50 > 100 µM). The initial antiviral activity observed for both hits against BVDV was corroborated by measuring the inhibitory effect on viral RNA synthesis and the production of infectious virus. Modification of the substituents on the quinolinecarboxamide scaffold resulted in analogues that proved about 7-fold more potent (average EC50 = 0.03 with a SD = 0.01 µM) and that were devoid of cellular toxicity, for the concentration range tested (SI = 3333). CSFCII resistant BVDV variants were selected and were found to carry the F224P mutation in the viral RNA-dependent RNA polymerase (RdRp), whereas CSFCI resistant BVDV carried two mutations in the same region of the RdRp, i.e., N264D and F224Y. Likewise, molecular modeling revealed that F224P/Y and N264D are located in a small cavity near the fingertip domain of the pestivirus polymerase. CSFC-resistant BVDV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110, LZ37, and BBP) that are known to target the same region of the RdRp. CSFC analogues did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). CSFC analogues likely interact with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110, LZ37, and BBP. This indicates that this region is a "hot spot" for the inhibition of pestivirus replication.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/drug therapy , Diarrhea Viruses, Bovine Viral/drug effects , Pestivirus/drug effects , Virus Replication/drug effects , Animals , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/pathogenicity , Drug Resistance, Viral/genetics , Mutation/drug effects , Pestivirus/pathogenicity , Quinolines/pharmacology
2.
Mini Rev Med Chem ; 8(1): 36-45, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18220983

ABSTRACT

The emergence of drug resistant strains of important human pathogens has made urgent the necessity of finding new targets and novel antimicrobial agents. One of the most promising targets is FabH. In this review we summarize the progress made in the design of FabH inhibitors and the role played by the 3D-structure of the enzyme in the drug design process.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/drug effects , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Drug Design , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Enzyme Inhibitors/pharmacology , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...