Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 9982, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292477

ABSTRACT

Development of an efficient and scalable synthesis of 6-formylindolo[3,2-b]carbazole (FICZ), a naturally-occurring aryl hydrocarbon receptor (AhR) ligand, allowed its biological and physical properties to be studied. FICZ was shown to be the most potent among a series of 6-substituted indolo[3,2-b]carbazoles for activation of AhR in cells. Photostability studies of FICZ revealed a non-enzymatic mechanism for its conversion to a biologically active quinone. These results further support the hypothesis that FICZ is a light-dependent hormone that links sun exposure to regulation of biological pathways in peripheral tissues.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carbazoles/chemical synthesis , Receptors, Aryl Hydrocarbon/metabolism , Carbazoles/chemistry , Carbazoles/pharmacology , Cell Line , Drug Stability , Humans , Ligands , Molecular Structure , Photochemical Processes
2.
J Med Chem ; 62(7): 3254-3267, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30763090

ABSTRACT

We previously described the discovery of GSK5852 (1), a non-nucleoside polymerase (NS5B) inhibitor of hepatitis C virus (HCV), in which an N-benzyl boronic acid was essential for potent antiviral activity. Unfortunately, facile benzylic oxidation resulted in a short plasma half-life (5 h) in human volunteers, and a backup program was initiated to remove metabolic liabilities associated with 1. Herein, we describe second-generation NS5B inhibitors including GSK8175 (49), a sulfonamide- N-benzoxaborole analog with low in vivo clearance across preclinical species and broad-spectrum activity against HCV replicons. An X-ray structure of NS5B protein cocrystallized with 49 revealed unique protein-inhibitor interactions mediated by an extensive network of ordered water molecules and the first evidence of boronate complex formation within the binding pocket. In clinical studies, 49 displayed a 60-63 h half-life and a robust decrease in viral RNA levels in HCV-infected patients, thereby validating our hypothesis that reducing benzylic oxidation would improve human pharmacokinetics and lower efficacious doses relative to 1.


Subject(s)
Antiviral Agents/pharmacology , Boronic Acids/pharmacology , Drug Design , Hepacivirus/drug effects , Nucleic Acid Synthesis Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Boronic Acids/chemistry , Boronic Acids/pharmacokinetics , Crystallography, X-Ray , Dogs , Half-Life , Humans , Macaca fascicularis , Mice , Molecular Structure , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacokinetics , Rats
3.
J Invest Dermatol ; 137(10): 2110-2119, 2017 10.
Article in English | MEDLINE | ID: mdl-28595996

ABSTRACT

Tapinarof (GSK2894512) is a naturally derived topical treatment with demonstrated efficacy for patients with psoriasis and atopic dermatitis, although the biologic target and mechanism of action had been unknown. We demonstrate that the anti-inflammatory properties of tapinarof are mediated through activation of the aryl hydrocarbon receptor (AhR). We show that tapinarof binds and activates AhR in multiple cell types, including cells of the target tissue-human skin. In addition, tapinarof moderates proinflammatory cytokine expression in stimulated peripheral blood CD4+ T cells and ex vivo human skin, and impacts barrier gene expression in primary human keratinocytes; both of these processes are likely to be downstream of AhR activation based on current evidence. That the anti-inflammatory properties of tapinarof derive from AhR agonism is conclusively demonstrated using the mouse model of imiquimod-induced psoriasiform skin lesions. Topical treatment of AhR-sufficient mice with tapinarof leads to compound-driven reductions in erythema, epidermal thickening, and tissue cytokine levels. In contrast, tapinarof has no impact on imiquimod-induced skin inflammation in AhR-deficient mice. In summary, these studies identify tapinarof as an AhR agonist and confirm that its efficacy is dependent on AhR.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Dermatitis, Atopic/drug therapy , Inflammation/drug therapy , Psoriasis/drug therapy , Receptors, Aryl Hydrocarbon/agonists , Resorcinols/administration & dosage , Stilbenes/administration & dosage , Administration, Topical , Animals , Cells, Cultured , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/pathology , Mice , Psoriasis/metabolism , Psoriasis/pathology , Skin/drug effects , Skin/metabolism , Skin/pathology
4.
Bioorg Med Chem Lett ; 25(2): 280-4, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25499883

ABSTRACT

The farnesoid X receptor (FXR) may play a crucial role in a number of metabolic diseases and, as such, could potentially serve as a target for the development of therapeutics as a treatment for those diseases. Previous work has described GW4064 as an FXR agonist with an interesting activity profile. This manuscript will describe the synthesis of novel analogs of GW4064 and the activity profile of those analogs.


Subject(s)
Isoxazoles/chemistry , Isoxazoles/pharmacology , Oxazolidinones/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Drug Evaluation, Preclinical , Fluorescence Resonance Energy Transfer , Humans , Models, Molecular , Molecular Structure , Oxazolidinones/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 24(10): 2288-94, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24731273

ABSTRACT

Two novel series of spirocyclic piperidine analogs appended to a pyrazolo[1,5-a]pyridine core were designed, synthesized and evaluated for their anti-HCV activity. A series of piperidine ketals afforded dispiro 6p which showed excellent in vitro anti-HCV activities (EC50 of 1.5nM and 1.2nM against genotype 1a and 1b replicons, respectively). A series of piperidine oxazolidinones afforded 27c which showed EC50's of 10.9nM and 6.1nM against 1a and 1b replicons, respectively. Both compounds 6p and 27c bound directly to non-structural NS4B protein in vitro (IC50's=10.2 and 30.4nM, respectively) and exhibited reduced potency in replicons containing resistance mutations encoding changes in the NS4B protein.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/physiology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Antiviral Agents/chemical synthesis , Drug Design , Hepacivirus/drug effects , Hepacivirus/metabolism , Humans , Molecular Targeted Therapy , Spiro Compounds/chemical synthesis
6.
J Med Chem ; 57(5): 2107-20, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23544424

ABSTRACT

We describe the preclinical development and in vivo efficacy of a novel chemical series that inhibits hepatitis C virus replication via direct interaction with the viral nonstructural protein 4B (NS4B). Significant potency improvements were realized through isosteric modifications to our initial lead 1a. The temptation to improve antiviral activity while compromising physicochemical properties was tempered by the judicial use of ligand efficiency indices during lead optimization. In this manner, compound 1a was transformed into (+)-28a which possessed an improved antiviral profile with no increase in molecular weight and only a modest elevation in lipophilicity. Additionally, we employed a chimeric "humanized" mouse model of HCV infection to demonstrate for the first time that a small molecule with high in vitro affinity for NS4B can inhibit viral replication in vivo. This successful proof-of-concept study suggests that drugs targeting NS4B may represent a viable treatment option for curing HCV infection.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Area Under Curve , Disease Models, Animal , Hepacivirus/physiology , Hepatitis C/virology , Mice , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology
7.
J Med Chem ; 57(5): 2091-106, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23944386

ABSTRACT

Hepatitis C virus (HCV) assembles many host cellular proteins into unique membranous replication structures as a prerequisite for viral replication, and PI4KIIIα is an essential component of these replication organelles. RNA interference of PI4KIIIα results in a breakdown of this replication complex and cessation of HCV replication in Huh-7 cells. PI4KIIIα is a lipid kinase that interacts with the HCV nonstructural 5A protein (NS5A) and enriches the HCV replication complex with its product, phosphoinositol 4-phosphate (PI4P). Elevated levels of PI4P at the endoplasmic reticulum have been linked to HCV infection in the liver of HCV infected patients. We investigated if small molecule inhibitors of PI4KIIIα could inhibit HCV replication in vitro. The synthesis and structure-activity relationships associated with the biological inhibition of PI4KIIIα and HCV replication are described. These efforts led directly to identification of quinazolinone 28 that displays high selectivity for PI4KIIIα and potently inhibits HCV replication in vitro.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Animals , Antiviral Agents/chemistry , Drug Discovery , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Hepacivirus/physiology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Rats , Structure-Activity Relationship , Virus Replication/drug effects
8.
Antimicrob Agents Chemother ; 57(11): 5216-24, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23939896

ABSTRACT

GSK2485852 (referred to here as GSK5852) is a hepatitis C virus (HCV) NS5B polymerase inhibitor with 50% effective concentrations (EC50s) in the low nanomolar range in the genotype 1 and 2 subgenomic replicon system as well as the infectious HCV cell culture system. We have characterized the antiviral activity of GSK5852 using chimeric replicon systems with NS5B genes from additional genotypes as well as NS5B sequences from clinical isolates of patients infected with HCV of genotypes 1a and 1b. The inhibitory activity of GSK5852 remained unchanged in these intergenotypic and intragenotypic replicon systems. GSK5852 furthermore displays an excellent resistance profile and shows a <5-fold potency loss across the clinically important NS5B resistance mutations P495L, M423T, C316Y, and Y448H. Testing of a diverse mutant panel also revealed a lack of cross-resistance against known resistance mutations in other viral proteins. Data from both the newer 454 sequencing method and traditional population sequencing showed a pattern of mutations arising in the NS5B RNA-dependent RNA polymerase in replicon cells exposed to GSK5852. GSK5852 was more potent than HCV-796, an earlier inhibitor in this class, and showed greater reductions in HCV RNA during long-term treatment of replicons. GSK5852 is similar to HCV-796 in its activity against multiple genotypes, but its superior resistance profile suggests that it could be an attractive component of an all-oral regimen for treating HCV.


Subject(s)
Antiviral Agents/pharmacology , Boronic Acids/pharmacology , Drug Resistance, Viral/drug effects , Enzyme Inhibitors/pharmacology , Replicon/drug effects , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Benzofurans/pharmacology , Cell Line , Drug Resistance, Viral/genetics , Enzyme Assays , Genotype , Hepacivirus/drug effects , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepatitis C, Chronic/virology , Hepatocytes/drug effects , Hepatocytes/virology , High-Throughput Nucleotide Sequencing , Humans , Kinetics , Microbial Sensitivity Tests , Molecular Typing , Mutation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
9.
Bioorg Med Chem Lett ; 22(24): 7351-6, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23142614

ABSTRACT

We have synthesized and evaluated a series of novel HCV NS3 protease inhibitors with various P4 capping groups, which include urea, carbamate, methoxy-carboxamide, cyclic carbamate and amide, pyruvic amide, oxamate, oxalamide and cyanoguanidine. Most of these compounds are remarkably potent, exhibiting single-digit to sub-nanomolar activity in the enzyme assay and cell-based replicon assay. Selected compounds were also evaluated in the protease-inhibitor-resistant mutant transient replicon assay, and they were found to show quite different potency profiles against a panel of HCV protease-inhibitor-resistant mutants.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemistry , Animals , Antiviral Agents/chemistry , Carbamates/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/genetics , Guanidines/chemistry , Hepacivirus/enzymology , Hepacivirus/genetics , Microbial Sensitivity Tests , Molecular Structure , Oxamic Acid/chemistry , Rats , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship , Urea/chemistry , Viral Nonstructural Proteins/metabolism
10.
J Med Chem ; 55(7): 3021-6, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22471376

ABSTRACT

The macrocyclic urea 2, a byproduct in the synthesis of benzoxaborole 1, was identified to be a novel and potent HCV protease inhibitor. We further explored this motif by synthesizing additional urea-based inhibitors and by characterizing them in replicase HCV protease-resistant mutants assay. Several compounds, exemplified by 12, were found to be more potent in HCV replicon assays than leading second generation inhibitors such as danoprevir and TMC-435350. Additionally, following oral administration, inhibitor 12 was found in rat liver in significantly higher concentrations than those reported for both danoprevir and TMC-435350, suggesting that inhibitor 12 has the combination of anti-HCV and pharmacokinetic properties that warrants further development of this series.


Subject(s)
Antiviral Agents/chemical synthesis , Drug Resistance, Viral , Hepacivirus/drug effects , Serine Proteinase Inhibitors/chemical synthesis , Urea/analogs & derivatives , Urea/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Hepacivirus/enzymology , Hepacivirus/genetics , Hydrophobic and Hydrophilic Interactions , Liver/metabolism , Mutation , Rats , Replicon/drug effects , Serine Proteinase Inhibitors/pharmacokinetics , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/pharmacology , Viral Nonstructural Proteins/genetics
11.
ACS Med Chem Lett ; 3(7): 565-9, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-24900511

ABSTRACT

A series of imidazo[1,2-a]pyridines which directly bind to HCV Non-Structural Protein 4B (NS4B) is described. This series demonstrates potent in vitro inhibition of HCV replication (EC50 < 10 nM), direct binding to purified NS4B protein (IC50 < 20 nM), and an HCV resistance pattern associated with NS4B (H94N/R, V105L/M, F98L) that are unique among reported HCV clinical assets, suggestive of the potential for additive or synergistic combination with other small molecule inhibitors of HCV replication.

12.
Bioorg Med Chem Lett ; 21(20): 6154-60, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21890356

ABSTRACT

To further explore the optimum placement of the acid moiety in conformationally constrained analogs of GW 4064 1a, a series of stilbene replacements were prepared. The benzothiophene 1f and the indole 1g display the optimal orientation of the carboxylate for enhanced FXR agonist potency.


Subject(s)
Isoxazoles/chemistry , Isoxazoles/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Stilbenes/chemistry , Stilbenes/pharmacology , Amino Acid Sequence , Animals , Cell Line , Humans , Molecular Conformation , Molecular Sequence Data , Receptors, Cytoplasmic and Nuclear/metabolism
13.
Bioorg Med Chem Lett ; 21(7): 2048-54, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21353550

ABSTRACT

We have synthesized and evaluated a new series of acyclic P4-benzoxaborole-based HCV NS3 protease inhibitors. Structure-activity relationships were investigated, leading to the identification of compounds 5g and 17 with low nanomolar potency in the enzymatic and cell-based replicon assay. The linker-truncated compound 5j was found to exhibit improved absorption and oral bioavailability in rats, suggesting that further reduction of molecular weight and polar surface area could result in improved drug-like properties of this novel series.


Subject(s)
Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 20(24): 7493-7, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21041080

ABSTRACT

HCV NS3/4A serine protease is essential for the replication of the HCV virus and has been a clinically validated target. A series of HCV NS3/4A protease inhibitors containing a novel acylsulfamoyl benzoxaborole moiety at the P1' region was synthesized and evaluated. The resulting P1-P3 and P2-P4 macrocyclic inhibitors exhibited sub-nanomolar potency in the enzymatic assay and low nanomolar activity in the cell-based replicon assay. The in vivo PK evaluations of selected compounds are also described.


Subject(s)
Boron Compounds/chemistry , Hepacivirus/enzymology , Protease Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Animals , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Catalytic Domain , Hepacivirus/drug effects , Male , Models, Molecular , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Virus Replication/drug effects
16.
Bioorg Med Chem Lett ; 20(19): 5695-700, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20801653

ABSTRACT

A novel series of P2-P4 macrocyclic HCV NS3/4A protease inhibitors with α-amino cyclic boronates as warheads at the P1 site was designed and synthesized. When compared to their linear analogs, these macrocyclic inhibitors exhibited a remarkable improvement in cell-based replicon activities, with compounds 9a and 9e reaching sub-micromolar potency in replicon assay. The SAR around α-amino cyclic boronates clearly established the influence of ring size, chirality and of the substitution pattern. Furthermore, X-ray structure of the co-crystal of inhibitor 9a and NS3 protease revealed that Ser-139 in the enzyme active site traps boron in the warhead region of 9a, thus establishing its mode of action.


Subject(s)
Boron Compounds/chemistry , Boronic Acids/chemistry , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Catalytic Domain , Crystallography, X-Ray , Hepacivirus/drug effects , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
18.
Bioorg Med Chem Lett ; 19(11): 2969-73, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19410460

ABSTRACT

Starting from the known FXR agonist GW 4064 1a, a series of alternately 3,5-substituted isoxazoles was prepared. Several of these analogs were potent full FXR agonists. A subset of this series, with a tether between the isoxazole ring and the 3-position aryl substituent, were equipotent FXR agonists to GW 4064 1a, with the 2,6-dimethyl phenol analog 1t having greater FRET FXR potency than GW 4064 1a.


Subject(s)
Isoxazoles/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Isoxazoles/chemistry , Isoxazoles/pharmacology , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 18(15): 4339-43, 2008 08 01.
Article in English | MEDLINE | ID: mdl-18621523
20.
Mol Endocrinol ; 22(4): 838-57, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18096694

ABSTRACT

Antagonizing the action of the human nuclear xenobiotic receptor pregnane X receptor (PXR) may have important clinical implications in preventing drug-drug interactions and improving therapeutic efficacy. We provide evidence that a naturally occurring phytoestrogen, coumestrol, is an antagonist of the nuclear receptor PXR (NR1I2). In transient transfection assays, coumestrol was able to suppress the agonist effects of SR12813 on human PXR activity. PXR activity was assessed and correlated with effects on the metabolism of the anesthetic tribromoethanol and on gene expression in primary human hepatocytes. We found that coumestrol was able to suppress the effects of PXR agonists on the expression of the known PXR target genes, CYP3A4 and CYP2B6, in primary human hepatocytes as well as inhibit metabolism of tribromoethanol in humanized PXR mice. Coumestrol at concentrations above 1.0 microm competed in scintillation proximity assays with a labeled PXR agonist for binding to the ligand-binding cavity. However, mammalian two-hybrid assays and transient transcription data using ligand-binding-cavity mutant forms of PXR show that coumestrol also antagonizes coregulator recruitment. This effect is likely by binding to a surface outside the ligand-binding pocket. Taken together, these data imply that there are antagonist binding site(s) for coumestrol on the surface of PXR. These studies provide the basis for development of novel small molecule inhibitors of PXR with the ultimate goal of clinical applications toward preventing drug-drug interactions.


Subject(s)
Coumestrol/pharmacology , Phytoestrogens/pharmacology , Receptors, Steroid/antagonists & inhibitors , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Cell Line , Cells, Cultured , Constitutive Androstane Receptor , Coumestrol/chemistry , Coumestrol/metabolism , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Ethanol/analogs & derivatives , Ethanol/metabolism , Female , Gene Expression/drug effects , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Immunohistochemistry , Mass Spectrometry , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Nuclear Receptor Coactivator 1 , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Phytoestrogens/chemistry , Phytoestrogens/metabolism , Pregnane X Receptor , Protein Binding , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL