Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Small ; 18(16): e2105939, 2022 04.
Article in English | MEDLINE | ID: mdl-35307960

ABSTRACT

The positioning and manipulation of large numbers of reagents in small aliquots are paramount to many fields in chemistry and the life sciences, such as combinatorial screening, enzyme activity assays, and point-of-care testing. Here, a capillary microfluidic architecture based on self-coalescence modules capable of storing thousands of dried reagent spots per square centimeter is reported, which can all be reconstituted independently without dispersion using a single pipetting step and ≤5 µL of a solution. A simple diffusion-based mathematical model is also provided to guide the spotting of reagents in this microfluidic architecture at the experimental design stage to enable either compartmentalization, mixing, or the generation of complex multi-reagent chemical patterns. Results demonstrate the formation of chemical patterns with high accuracy and versatility, and simple methods for integrating reagents and imaging the resulting chemical patterns.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Diffusion , Enzyme Assays , Indicators and Reagents , Microfluidics/methods
2.
ACS Nano ; 15(11): 17137-17149, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34705433

ABSTRACT

The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing
3.
Angew Chem Int Ed Engl ; 60(45): 24064-24069, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34460136

ABSTRACT

Forming hydrogels with precise geometries is challenging and mostly done using photopolymerization, which involves toxic chemicals, rinsing steps, solvents, and bulky optical equipment. Here, we introduce a new method for in situ formation of hydrogels with a well-defined geometry in a sealed microfluidic chip by interfacial polymerization. The geometry of the hydrogel is programmed by microfluidic design using capillary pinning structures and bringing into contact solutions containing hydrogel precursors from vicinal channels. The characteristics of the hydrogel (mesh size, molecular weight cut-off) can be readily adjusted. This method is compatible with capillary-driven microfluidics, fast, uses small volumes of reagents and samples, and does not require specific laboratory equipment. Our approach creates opportunities for filtration, hydrogel functionalization, and hydrogel-based assays, as exemplified by a rapid, compact competitive immunoassay that does not require a rinsing step.

4.
Langmuir ; 37(32): 9637-9651, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34347483

ABSTRACT

Patterning biomolecules on surfaces provides numerous opportunities for miniaturizing biological assays; biosensing; studying proteins, cells, and tissue sections; and engineering surfaces that include biological components. In this Feature Article, we summarize the themes presented in our recent Langmuir Lecture on patterning biomolecules on surfaces, miniaturizing surface assays, and interacting with biointerfaces using three key technologies: microcontact printing, microfluidic networks, and microfluidic probes.


Subject(s)
Biological Assay , Microfluidics , Humans , Proteins , Surface Properties
5.
Lab Chip ; 21(18): 3573-3582, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34341817

ABSTRACT

Rapid tests for glucose-6-phosphate dehydrogenase (G6PD) are extremely important for determining G6PD deficiency, a widespread metabolic disorder which triggers hemolytic anemia in response to primaquine and tafenoquine medication, the most effective drugs for the radical cure of malaria caused by Plasmodium parasites. Current point-of-care diagnostic devices for G6PD are either qualitative, do not normalize G6PD activity to the hemoglobin concentration, or are very expensive. In this work we developed a capillary-driven microfluidic chip to perform a quantitative G6PD test and a hemoglobin measurement within 2 minutes and using less than 2 µL of sample. We used a powerful microfluidic module to integrate and resuspend locally the reagents needed for the G6PD assay and controls. We also developed a theoretical model that successfully predicts the enzymatic reactions on-chip, guides on-chip reagent spotting and allows efficient integration of multiple assays in miniaturized formats with only a few nanograms of reagents.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase , Hemoglobins , Microfluidics , Primaquine
6.
Angew Chem Int Ed Engl ; 60(33): 17784-17796, 2021 08 09.
Article in English | MEDLINE | ID: mdl-33710725

ABSTRACT

Medication adherence is a medical and societal issue worldwide, with approximately half of patients failing to adhere to prescribed treatments. The goal of this Minireview is to examine how recent work on microfluidics for point-of-care diagnostics may be used to enhance adherence to medication. It specifically focuses on capillary microfluidics since these devices are self-powered, easy to use, and well established for diagnostics and drug monitoring. Considering that an improvement in medication adherence can have a much larger effect than the development of new medical treatments, it is long overdue for the research communities working in chemistry, biology, pharmacology, and material sciences to consider developing technologies to enhance medication adherence. For these reasons, this Minireview is not meant to be exhaustive but rather to provide a quick starting point for researchers interested in joining this complex but intriguing and exciting field of research.


Subject(s)
Drug Monitoring , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Humans , Medication Adherence
7.
Small ; 16(49): e2005476, 2020 12.
Article in English | MEDLINE | ID: mdl-33201612

ABSTRACT

Nucleic acid hybridization reactions play an important role in many (bio)chemical fields, for example, for the development of portable point-of-care diagnostics, and often such applications require nucleic acid-based reaction systems that ideally run without enzymes under isothermal conditions. The use of novel capillary-driven microfluidic chips to perform two isothermal nucleic acid hybridization reactions, the simple opening of molecular beacon structures and the complex reaction cascade of a clamped-hybridization chain reaction (C-HCR), is reported here. For this purpose, reagents are arranged in a self-coalescence module (SCM) of a passive silicon microfluidic chip using inkjet spotting. The SCM occupies a footprint of ≈7 mm2 of a ≈0.4 × 2 cm2 microfluidic chip. By means of fluorophore-labeled DNA probes, the hybridization reactions can be analyzed in just ≈2 min and using only ≈3 µL of the sample. Furthermore, the SCM chip offers a variety of reagent delivery options, allowing, for example, the influence of the initiator concentration on the kinetics of C-HCR to be investigated systematically with minimal sample and time requirements. These results suggest that self-powered microfluidic chips equipped with a SCM provide a powerful platform for performing and investigating complex reaction systems.


Subject(s)
Microfluidic Analytical Techniques , Nucleic Acids , Fluorescent Dyes , Microfluidics , Nucleic Acid Amplification Techniques , Nucleic Acid Hybridization
8.
Sci Adv ; 6(16): eaay8305, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32494605

ABSTRACT

Microfluidics are essential for many lab-on-a-chip applications, but it is still challenging to implement a portable and programmable device that can perform an assay protocol autonomously when used by a person with minimal training. Here, we present a versatile concept toward this goal by realizing programmable liquid circuits where liquids in capillary-driven microfluidic channels can be controlled and monitored from a smartphone to perform various advanced tasks of liquid manipulation. We achieve this by combining electro-actuated valves (e-gates) with passive capillary valves and self-vented channels. We demonstrate the concept by implementing a 5-mm-diameter microfluidic clock, a chip to control four liquids using 100 e-gates with electronic feedback, and designs to deliver and merge multiple liquids sequentially or in parallel in any order and combination. This concept is scalable, compatible with high-throughput manufacturing, and can be adopted in many microfluidics-based assays that would benefit from precise and easy handling of liquids.

9.
Anal Chem ; 92(1): 940-946, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31860276

ABSTRACT

Point-of-care (POC) immunodiagnostic tests play a crucial role in enabling rapid and correct diagnosis of diseases in prehospital care, emergency, and remote settings. In this work, we present a silicon-based, capillary-driven microfluidic chip integrating two microfluidic modules for the implementation of highly miniaturized immunoassays. Specifically, we apply state-of-the-art microfluidic technology to demonstrate a one-step immunoassay for the detection of the cardiac marker troponin I in human serum using sample volumes of ∼1 µL and with a limit of detection (LOD) of ∼4 ng mL-1 within 25 min. The microfluidic modules discussed here broadly map functionalities found in standard lateral flow assays. We implement a self-coalescence module (SCM) for the controlled reconstitution and delivery of inkjet-spotted and dried detection antibodies (dAbs). This allows for homogeneous dissolution of 1.3 ng of fluorescently labeled dAbs in 416 nL of the sample used for the assay. We also show how to immobilize receptors inside closed microfluidic devices in <30 s using bead lane modules inside which microbeads functionalized with capture antibodies (cAbs) are self-assembled. The resulting bead lane module, with a volume of ∼3 × 10-5 mm3, is positioned across the flow path and holds ∼300 5 µm-diameter microbeads. Altogether, these capillary-driven elements allow for the manipulation of samples and reagents with an unprecedented precision and control, paving the way for the next generation of POC immunodiagnostics.


Subject(s)
Immunoassay/methods , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Troponin I/blood , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Humans , Immunoassay/instrumentation , Limit of Detection , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Testing , Troponin I/immunology
10.
Sci Rep ; 9(1): 17242, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754240

ABSTRACT

Flow rates play an important role in microfluidic devices because they affect the transport of chemicals and determine where and when (bio)chemical reactions occur in these devices. Flow rates can conveniently be determined using external peripherals in active microfluidics. However, setting specific flow rates in passive microfluidics is a significant challenge because they are encoded on a design and fabrication level, leaving little freedom to users for adjusting flow rates for specific applications. Here, we present a programmable hydraulic resistor where an array of "electrogates" routes an incoming liquid through a set of resistors to modulate flow rates in microfluidic chips post-fabrication. This approach combines a battery-powered peripheral device with passive capillary-driven microfluidic chips for advanced flow rate control and measurement. We specifically show a programmable hydraulic resistor composed of 7 parallel resistors and 14 electrogates. A peripheral and smartphone application allow a user to activate selected electrogates and resistors, providing 127 (27-1) flow resistance combinations with values spanning on a 500 fold range. The electrogates feature a capillary pinning site (i.e. trench across the flow path) to stop a solution and an electrode, which can be activated in a few ms using a 3 V bias to resume flow based on electrowetting. The hydraulic resistor and microfluidic chip shown here enable flow rates from ~0.09 nL.s-1 up to ~5.66 nL.s-1 with the resistor occupying a footprint of only 15.8 mm2 on a 1 × 2 cm2 microfluidic chip fabricated in silicon. We illustrate how a programmable hydraulic resistor can be used to set flow rate conditions for laminar co-flow of 2 liquids and the enzymatic conversion of a substrate by stationary enzymes (alkaline phosphatase) downstream of the programmable hydraulic resistor.

11.
Nature ; 574(7777): 228-232, 2019 10.
Article in English | MEDLINE | ID: mdl-31597972

ABSTRACT

Microfluidic systems can deliver portable point-of-care diagnostics without the need for external equipment or specialist operators, by integrating all reagents and manipulations required for a particular assay in one device1. A key approach is to deposit picogram quantities of dried reagents in microchannels with micrometre precision using specialized inkjet plotters2-5. This means that reagents can be stored for long periods of time and reconstituted spontaneously when adding a liquid sample. But it is challenging to carry out complex operations using multiple reagents, because shear flow enhances their dispersion and they tend to accumulate at moving liquid fronts, resulting in poor spatiotemporal control over the concentration profile of the reconstituted reagents6. One solution is to limit the rate of release of reagents into the liquid7-10. However, this requires the fine-tuning of different reagents, conditions and targeted operations, and cannot readily produce the complex, time-dependent multireagent concentration pulses required for sophisticated on-chip assays. Here we report and characterize a capillary flow phenomenon that we term self-coalescence, which is seen when a confined liquid with a stretched air-liquid interface is forced to 'zip' back onto itself in a microfluidic channel, thereby allowing reagent reconstitution with minimal dispersion. We provide a comprehensive framework that captures the physical underpinning of this effect. We also fabricate scalable, compact and passive microfluidic structures-'self-coalescence modules', or SCMs-that exploit and control this phenomenon in order to dissolve dried reagent deposits in aqueous solutions with precise spatiotemporal control. We show that SCMs can reconstitute multiple reagents so that they either undergo local reactions or are sequentially delivered in a flow of liquid. SCMs are easily fabricated in different materials, readily configured to enable different reagent manipulations, and readily combined with other microfluidic technologies, so should prove useful for assays, diagnostics, high-throughput screening and other technologies requiring efficient preparation and manipulation of small volumes of complex solutions.


Subject(s)
Indicators and Reagents/analysis , Microfluidics/methods , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Diagnostic Tests, Routine , Enzyme Assays/instrumentation , Enzyme Assays/methods , Fluorometry , Glucosephosphate Dehydrogenase/analysis , Glucosephosphate Dehydrogenase/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/isolation & purification , Human papillomavirus 18/genetics , Human papillomavirus 18/isolation & purification , Humans , Microfluidics/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods
12.
Biomed Microdevices ; 21(1): 24, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30810808

ABSTRACT

Accurate and affordable rapid diagnostic tests (RDTs) are indispensable but often lacking for many infectious diseases. Specifically, there is a lack of highly sensitive malaria RDTs that can detect low antigen concentration at the onset of infection. Here, we present a strategy to improve the sensitivity of malaria RDTs by using capillary-driven microfluidic chips and combining sandwich immunoassays with electroless silver staining. We used 5 µm fluorescent beads functionalized with capture antibodies (cAbs). These beads are self-assembled by capillary action in recessed "bead lanes", which cross the main flow path of chips microfabricated in Si and SU-8. The binding of analytes to detection antibodies (dAbs) and secondary antibodies (2ndAbs) conjugated to gold nanoparticles (NPs) allows the formation of a silver film on the beads. Such silver film masks the fluorescent core of the bead inversely proportional to the concentration of antigen in a sample. We illustrate this method using the recombinant malaria antigen Plasmodium falciparum histidine-rich-protein 2 (rPfHRP2) spiked in human serum. This antigen was a recombinant HRP2 protein expressed in Escherichia coli, which is also the standard reference material. The limit of detection (LOD) of our immunoassay was found to be less than 6 ng mL-1 of rPfHRP2 within 20 min, which is approaching the desired sensitivity needed in the Target Product Profile (TPP) for malaria elimination settings. The concept presented here is flexible and may also be utilized for implementing fluorescence immunoassays for the parallel detection of biomarkers on capillary-driven microfluidic chips.


Subject(s)
Antigens, Protozoan/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Microfluidics/methods , Plasmodium falciparum/chemistry , Protozoan Proteins/analysis , Silver Staining/methods , Antigens, Protozoan/immunology , Fluorescent Antibody Technique/instrumentation , Fluorescent Antibody Technique/methods , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology
13.
Malar J ; 17(1): 260, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29996831

ABSTRACT

Malaria, together with HIV/AIDS, tuberculosis and hepatitis are the four most deadly infectious diseases globally. Progress in eliminating malaria has saved millions of lives, but also creates new challenges in detecting the 'last parasite'. Effective and accurate detection of malaria infections, both in symptomatic and asymptomatic individuals are needed. In this review, the current progress in developing new diagnostic tools to fight malaria is presented. An ideal rapid test for malaria elimination is envisioned with examples to demonstrate how innovative technologies can assist the global defeat against this disease. Diagnostic gaps where technology can bring an impact to the elimination campaign for malaria are identified. Finally, how a combination of microfluidic-based technologies and smartphone-based read-outs could potentially represent the next generation of rapid diagnostic tests is discussed.


Subject(s)
Diagnostic Tests, Routine/methods , Disease Eradication/methods , Malaria/diagnosis , Malaria/prevention & control , Humans
14.
Sci Rep ; 8(1): 10603, 2018 07 13.
Article in English | MEDLINE | ID: mdl-30006576

ABSTRACT

The ever-increasing need for portable, easy-to-use, cost-effective, and connected point-of-care diagnostics (POCD) has been one of the main drivers of recent research on lab-on-a-chip (LoC) devices. A majority of these devices use microfluidics to manipulate precisely samples and reagents for bioanalysis. However, filling microfluidic devices with liquid can be prone to failure. For this reason, we have implemented a simple, yet efficient method for monitoring liquid displacement in microfluidic chips using capacitive sensing and a compact (75 mm × 30 mm × 10 mm), low-cost ($60), and battery-powered (10-hour autonomy) device communicating with a smartphone. We demonstrated the concept using a capillary-driven microfluidic chip comprising two equivalent flow paths, each with a total volume of 420 nL. Capacitance measurements from a pair of electrodes patterned longitudinally along the flow paths yielded 17 pL resolution in monitoring liquid displacement at a sampling rate of 1 data/s (~1 nL/min resolution in the flow rate). We characterized the system using human serum, biological buffers, and water, and implemented an algorithm to provide real-time information on flow conditions occurring in a microfluidic chip and interactive guidance to the user.

15.
Anal Chem ; 90(12): 7383-7390, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29882657

ABSTRACT

Warnings and reports on counterfeit diagnostic devices are released several times a year by regulators and public health agencies. Unfortunately, mishandling, altering, and counterfeiting point-of-care diagnostics (POCDs) and rapid diagnostic tests (RDTs) is lucrative, relatively simple and can lead to devastating consequences. Here, we demonstrate how to implement optical security codes in silicon- and nitrocellulose-based flow paths for device authentication using a smartphone. The codes are created by inkjet spotting inks directly on nitrocellulose or on micropillars. Codes containing up to 32 elements per mm2 and 8 colors can encode as many as 1045 combinations. Codes on silicon micropillars can be erased by setting a continuous flow path across the entire array of code elements or for nitrocellulose by simply wicking a liquid across the code. Static or labile code elements can further be formed on nitrocellulose to create a hidden code using poly(ethylene glycol) (PEG) or glycerol additives to the inks. More advanced codes having a specific deletion sequence can also be created in silicon microfluidic devices using an array of passive routing nodes, which activate in a particular, programmable sequence. Such codes are simple to fabricate, easy to view, and efficient in coding information; they can be ideally used in combination with information on a package to protect diagnostic devices from counterfeiting.


Subject(s)
Diagnostic Tests, Routine/instrumentation , Equipment and Supplies/standards , Ink , Smartphone , Collodion , Color , Diagnostic Equipment , Humans , Lab-On-A-Chip Devices , Optical Devices , Point-of-Care Testing
16.
Biomed Microdevices ; 20(2): 41, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29781041

ABSTRACT

Point-of-care (POC) diagnostics are critically needed for the detection of infectious diseases, particularly in remote settings where accurate and appropriate diagnosis can save lives. However, it is difficult to implement immunoassays, and specifically immunoassays relying on signal amplification using silver staining, into POC diagnostic devices. Effective immobilization of antibodies in such devices is another challenge. Here, we present strategies for immobilizing capture antibodies (cAbs) in capillary-driven microfluidic chips and implementing a gold-catalyzed silver staining reaction. We illustrate these strategies using a species/anti-species immunoassay and the capillary assembly of fluorescent microbeads functionalized with cAbs in "bead lanes", which are engraved in microfluidic chips. The microfluidic chips are fabricated in silicon (Si) and sealed with a dry film resist. Rabbit IgG antibodies in samples are captured on the beads and bound by detection antibodies (dAbs) conjugated to gold nanoparticles. The gold nanoparticles catalyze the formation of a metallic film of silver, which attenuates fluorescence from the beads in an analyte-concentration dependent manner. The performance of these immunoassays was found comparable to that of assays performed in 96 well microtiter plates using "classical" enzyme-linked immunosorbent assay (ELISA). The proof-of-concept method developed here can detect 24.6 ng mL-1 of rabbit IgG antibodies in PBS within 20 min, in comparison to 17.1 ng mL-1 of the same antibodies using a ~140-min-long ELISA protocol. Furthermore, the concept presented here is flexible and necessitate volumes of samples and reagents in the range of just a few microliters.


Subject(s)
Gold/chemistry , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Microspheres , Silver Staining/instrumentation , Equipment Design
17.
Biomed Microdevices ; 19(4): 95, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29082438

ABSTRACT

Multiplexing assays using microbeads in microfluidics offers high flexibility and throughput, but requires the ability to sort particles based on their physical properties. In this paper, we present a continuous method for separating microbeads that is compact, modular and adaptive, employing an optimized electrode layout that alternates sorting and concentration of microbeads using dielectrophoresis and a nested design. By simulating the combined effects of the hydrodynamic drag and dielectrophoresis forces on polystyrene beads, the parameters of the electrode layout and voltage configuration are optimized for maximum separation based on particle size with a small number of slanted planar electrodes. Experimental verification confirms the efficient separation of 10 µm and 5 µm beads, with ~98% of all concentrated beads sorted in two separate streams and only ~2% of 5 µm beads leaking into the 10 µm bead stream. In addition, this method is implemented on capillary-driven microfluidic chips for maximum portability and ease of use.


Subject(s)
Equipment Design , Microfluidic Analytical Techniques/instrumentation , Microfluidics , Microspheres , Electrodes , Electrophoresis , Particle Size , Polystyrenes
19.
Methods Mol Biol ; 1547: 25-36, 2017.
Article in English | MEDLINE | ID: mdl-28044284

ABSTRACT

The fabrication of silicon-based microfluidic chips is invaluable in supporting the development of many microfluidic concepts for research in the life sciences and in vitro diagnostic applications such as the realization of miniaturized immunoassays using capillary-driven chips. While being extremely abundant, the literature covering microfluidic chip fabrication and assay development might not have addressed properly the challenge of fabricating microfluidic chips on a wafer level or the need for dicing wafers to release chips that need then to be further processed, cleaned, rinsed, and dried one by one. Here, we describe the "chip-olate" process wherein microfluidic structures are formed on a silicon wafer, followed by partial dicing, cleaning, and drying steps. Then, integration of reagents (if any) can be done, followed by lamination of a sealing cover. Breaking by hand the partially diced wafer yields individual chips ready for use.


Subject(s)
Immunoassay/instrumentation , Immunoassay/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Equipment Design , Microfluidic Analytical Techniques/methods , Microfluidics/methods
20.
Methods Mol Biol ; 1547: 37-47, 2017.
Article in English | MEDLINE | ID: mdl-28044285

ABSTRACT

The miniaturization of immunoassays using microfluidic devices is attractive for many applications, but an important challenge remains the patterning of capture antibodies (cAbs) on the surface of microfluidic structures. Here, we describe how to pattern cAbs on planar poly(dimethylsiloxane) (PDMS) stamps and how to microcontact print the cAbs on a dry-film resist (DFR). DFRs are new types of photoresists having excellent chemical resistance and good mechanical, adhesive, and optical properties. Instead of being liquid photoresists, DFRs are thin layers that are easy to handle, cut, photo-pattern, and laminate over surfaces. We show how to perform a simple fluorescence immunoassay using anti-biotin cAbs patterned on a 50-µm-thick DF-1050 DFR, Atto 647N-biotin analytes, and capillary-driven chips fabricated in silicon.


Subject(s)
Immunoassay/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Antibodies/immunology , Equipment Design , Fluorescent Antibody Technique , Immunoassay/methods , Microfluidics/methods , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...